Nuprl Lemma : param-W_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].  (pW ∈ P ⟶ Type)
Proof
Definitions occuring in Statement : 
param-W: pW
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
param-W: pW
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pcw-path: Path
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
param-co-W_wf, 
all_wf, 
pcw-path_wf, 
pcw-step-agree_wf, 
false_wf, 
le_wf, 
squash_wf, 
exists_wf, 
nat_wf, 
pcw-pp-barred_wf, 
pcw-partial_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
applyEquality, 
cumulativity, 
because_Cache, 
functionEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    (pW  \mmember{}  P  {}\mrightarrow{}  Type)
Date html generated:
2016_05_14-AM-06_13_17
Last ObjectModification:
2015_12_26-PM-00_05_38
Theory : co-recursion
Home
Index