Nuprl Lemma : pcw-partial_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[path:Path]. ∀[n:ℕ].
  (pcw-partial(path;n) ∈ PartialPath)


Proof




Definitions occuring in Statement :  pcw-partial: pcw-partial(path;n) pcw-pp: PartialPath pcw-path: Path nat: uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-partial: pcw-partial(path;n) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pcw-path: Path pcw-pp: PartialPath subtype_rel: A ⊆B nat: uimplies: supposing a all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_wf pcw-path_wf subtype_rel_dep_function pcw-step_wf int_seg_wf int_seg_subtype_nat subtype_rel_self all_wf subtract_wf pcw-steprel_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 lelt_wf add-member-int_seg2 decidable__le not-le-2 zero-add add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isect_memberEquality isectElimination thin hypothesisEquality because_Cache lambdaEquality applyEquality functionEquality cumulativity universeEquality setElimination rename dependent_set_memberEquality dependent_pairEquality natural_numberEquality independent_isectElimination lambdaFormation productElimination independent_pairFormation dependent_functionElimination unionElimination voidElimination independent_functionElimination addEquality minusEquality voidEquality intEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[path:Path].  \mforall{}[n:\mBbbN{}].
    (pcw-partial(path;n)  \mmember{}  PartialPath)



Date html generated: 2016_05_14-AM-06_12_59
Last ObjectModification: 2015_12_26-PM-00_06_00

Theory : co-recursion


Home Index