Nuprl Lemma : pcw-partial_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[path:Path]. ∀[n:ℕ].
(pcw-partial(path;n) ∈ PartialPath)
Proof
Definitions occuring in Statement :
pcw-partial: pcw-partial(path;n)
,
pcw-pp: PartialPath
,
pcw-path: Path
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2;s3]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
pcw-partial: pcw-partial(path;n)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
pcw-path: Path
,
pcw-pp: PartialPath
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
uiff: uiff(P;Q)
,
subtract: n - m
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
Lemmas referenced :
nat_wf,
pcw-path_wf,
subtype_rel_dep_function,
pcw-step_wf,
int_seg_wf,
int_seg_subtype_nat,
subtype_rel_self,
all_wf,
subtract_wf,
pcw-steprel_wf,
decidable__lt,
false_wf,
not-lt-2,
less-iff-le,
condition-implies-le,
add-associates,
minus-add,
minus-one-mul,
add-swap,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
le-add-cancel2,
lelt_wf,
add-member-int_seg2,
decidable__le,
not-le-2,
zero-add,
add-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
lemma_by_obid,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
lambdaEquality,
applyEquality,
functionEquality,
cumulativity,
universeEquality,
setElimination,
rename,
dependent_set_memberEquality,
dependent_pairEquality,
natural_numberEquality,
independent_isectElimination,
lambdaFormation,
productElimination,
independent_pairFormation,
dependent_functionElimination,
unionElimination,
voidElimination,
independent_functionElimination,
addEquality,
minusEquality,
voidEquality,
intEquality
Latex:
\mforall{}[P:Type]. \mforall{}[A:P {}\mrightarrow{} Type]. \mforall{}[B:p:P {}\mrightarrow{} A[p] {}\mrightarrow{} Type]. \mforall{}[C:p:P {}\mrightarrow{} a:A[p] {}\mrightarrow{} B[p;a] {}\mrightarrow{} P].
\mforall{}[path:Path]. \mforall{}[n:\mBbbN{}].
(pcw-partial(path;n) \mmember{} PartialPath)
Date html generated:
2016_05_14-AM-06_12_59
Last ObjectModification:
2015_12_26-PM-00_06_00
Theory : co-recursion
Home
Index