Nuprl Lemma : eq_int-wf-bar


[x,y:partial(Base)].  ((x =z y) ∈ bar(𝔹))


Proof




Definitions occuring in Statement :  bar: bar(T) partial: partial(T) eq_int: (i =z j) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  bar: bar(T)
Lemmas referenced :  eq_int-wf-partial
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesis

Latex:
\mforall{}[x,y:partial(Base)].    ((x  =\msubz{}  y)  \mmember{}  bar(\mBbbB{}))



Date html generated: 2016_07_08-PM-05_18_47
Last ObjectModification: 2016_01_06-AM-00_37_52

Theory : bar!type


Home Index