Step * of Lemma fixpoint-induction

[T:Type]. (∀f:bar(T) ⟶ bar(T). (fix(f) ∈ bar(T))) supposing (mono(T) and value-type(T))
BY
(Auto THEN InstLemma `fixpoint-induction-bottom-bar` [⌜T⌝;⌜bar(T)⌝;⌜λ2x.x⌝]⋅ THEN Auto) }


Latex:


Latex:
\mforall{}[T:Type].  (\mforall{}f:bar(T)  {}\mrightarrow{}  bar(T).  (fix(f)  \mmember{}  bar(T)))  supposing  (mono(T)  and  value-type(T))


By


Latex:
(Auto  THEN  InstLemma  `fixpoint-induction-bottom-bar`  [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}bar(T)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.x\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index