Step
*
of Lemma
fpf-accum_wf
∀[A,C:Type]. ∀[B:A ⟶ Type]. ∀[x:a:A fp-> B[a]]. ∀[y:C]. ∀[f:C ⟶ a:A ⟶ B[a] ⟶ C].
(fpf-accum(z,a,v.f[z;a;v];y;x) ∈ C)
BY
{ xxx(Auto THEN DVar `x' THEN Unfold `fpf-accum` 0 THEN Reduce 0)xxx }
1
1. A : Type
2. C : Type
3. B : A ⟶ Type
4. d : A List
5. x1 : a:{a:A| (a ∈ d)} ⟶ B[a]
6. y : C
7. f : C ⟶ a:A ⟶ B[a] ⟶ C
⊢ accumulate (with value z and list item a):
f[z;a;x1 a]
over list:
d
with starting value:
y) ∈ C
Latex:
Latex:
\mforall{}[A,C:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[x:a:A fp-> B[a]]. \mforall{}[y:C]. \mforall{}[f:C {}\mrightarrow{} a:A {}\mrightarrow{} B[a] {}\mrightarrow{} C].
(fpf-accum(z,a,v.f[z;a;v];y;x) \mmember{} C)
By
Latex:
xxx(Auto THEN DVar `x' THEN Unfold `fpf-accum` 0 THEN Reduce 0)xxx
Home
Index