Nuprl Lemma : fpf-dom-type2
∀[X,Y:Type]. ∀[eq:EqDecider(Y)]. ∀[f:x:X fp-> Top]. ∀[x:Y].  {x ∈ X supposing ↑x ∈ dom(f)} supposing strong-subtype(X;Y)
Proof
Definitions occuring in Statement : 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
strong-subtype: strong-subtype(A;B), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
guard: {T}, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
Lemmas referenced : 
fpf-dom-type
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}[X,Y:Type].  \mforall{}[eq:EqDecider(Y)].  \mforall{}[f:x:X  fp->  Top].  \mforall{}[x:Y].
    \{x  \mmember{}  X  supposing  \muparrow{}x  \mmember{}  dom(f)\}  supposing  strong-subtype(X;Y)
Date html generated:
2018_05_21-PM-09_17_34
Last ObjectModification:
2018_02_09-AM-10_16_34
Theory : finite!partial!functions
Home
Index