Step
*
1
of Lemma
fpf-join-list-ap-disjoint
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. L : a:A fp-> B[a] List
5. x : A
6. ↑x ∈ dom(⊕(L))
7. i : ℕ||L||
8. ↑x ∈ dom(L[i])
9. ⊕(L)(x) = L[i](x) ∈ B[x]
10. (∀f,g∈L. ∀x:A. (¬((↑x ∈ dom(f)) ∧ (↑x ∈ dom(g)))))
11. f : a:A fp-> B[a]
12. (f ∈ L)
13. ↑x ∈ dom(f)
⊢ ⊕(L)(x) = f(x) ∈ B[x]
BY
{ (HypSubst (-5) 0 THENA Auto) }
1
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. L : a:A fp-> B[a] List
5. x : A
6. ↑x ∈ dom(⊕(L))
7. i : ℕ||L||
8. ↑x ∈ dom(L[i])
9. ⊕(L)(x) = L[i](x) ∈ B[x]
10. (∀f,g∈L. ∀x:A. (¬((↑x ∈ dom(f)) ∧ (↑x ∈ dom(g)))))
11. f : a:A fp-> B[a]
12. (f ∈ L)
13. ↑x ∈ dom(f)
⊢ L[i](x) = f(x) ∈ B[x]
Latex:
Latex:
1. A : Type
2. eq : EqDecider(A)
3. B : A {}\mrightarrow{} Type
4. L : a:A fp-> B[a] List
5. x : A
6. \muparrow{}x \mmember{} dom(\moplus{}(L))
7. i : \mBbbN{}||L||
8. \muparrow{}x \mmember{} dom(L[i])
9. \moplus{}(L)(x) = L[i](x)
10. (\mforall{}f,g\mmember{}L. \mforall{}x:A. (\mneg{}((\muparrow{}x \mmember{} dom(f)) \mwedge{} (\muparrow{}x \mmember{} dom(g)))))
11. f : a:A fp-> B[a]
12. (f \mmember{} L)
13. \muparrow{}x \mmember{} dom(f)
\mvdash{} \moplus{}(L)(x) = f(x)
By
Latex:
(HypSubst (-5) 0 THENA Auto)
Home
Index