Step
*
of Lemma
fpf-rename-ap2
∀[A,C:Type]. ∀[B:A ⟶ Type]. ∀[eqa:EqDecider(A)]. ∀[eqc,eqc':EqDecider(C)]. ∀[r:A ⟶ C]. ∀[f:a:A fp-> B[a]]. ∀[a:A].
(rename(r;f)(r a) = f(a) ∈ B[a]) supposing ((↑a ∈ dom(f)) and Inj(A;C;r))
BY
{ xxx(((UnivCD THENA Auto)
THEN Unfolds ``fpf-rename fpf-ap`` 0
THEN DVar `f'
THEN Reduce 0
THEN (InstLemma `hd-filter` [A; λ2y.eqc (r y) (r a); d])⋅)
THENA Auto
)xxx }
1
.....antecedent.....
1. A : Type
2. C : Type
3. B : A ⟶ Type
4. eqa : EqDecider(A)
5. eqc : EqDecider(C)
6. eqc' : EqDecider(C)
7. r : A ⟶ C
8. d : A List
9. f1 : a:{a:A| (a ∈ d)} ⟶ B[a]
10. a : A
11. Inj(A;C;r)
12. ↑a ∈ dom(<d, f1>)
⊢ ∃a@0:A. ((a@0 ∈ d) ∧ (↑(eqc (r a@0) (r a))))
2
1. A : Type
2. C : Type
3. B : A ⟶ Type
4. eqa : EqDecider(A)
5. eqc : EqDecider(C)
6. eqc' : EqDecider(C)
7. r : A ⟶ C
8. d : A List
9. f1 : a:{a:A| (a ∈ d)} ⟶ B[a]
10. a : A
11. Inj(A;C;r)
12. ↑a ∈ dom(<d, f1>)
13. (hd(filter(λa@0.(eqc (r a@0) (r a));d)) ∈ A)
c∧ ((hd(filter(λa@0.(eqc (r a@0) (r a));d)) ∈ d) ∧ (↑(eqc (r hd(filter(λa@0.(eqc (r a@0) (r a));d))) (r a))))
⊢ (f1 hd(filter(λy.(eqc (r y) (r a));d))) = (f1 a) ∈ B[a]
Latex:
Latex:
\mforall{}[A,C:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[eqa:EqDecider(A)]. \mforall{}[eqc,eqc':EqDecider(C)]. \mforall{}[r:A {}\mrightarrow{} C].
\mforall{}[f:a:A fp-> B[a]]. \mforall{}[a:A].
(rename(r;f)(r a) = f(a)) supposing ((\muparrow{}a \mmember{} dom(f)) and Inj(A;C;r))
By
Latex:
xxx(((UnivCD THENA Auto)
THEN Unfolds ``fpf-rename fpf-ap`` 0
THEN DVar `f'
THEN Reduce 0
THEN (InstLemma `hd-filter` [A; \mlambda{}\msubtwo{}y.eqc (r y) (r a); d])\mcdot{})
THENA Auto
)xxx
Home
Index