Step
*
of Lemma
fpf-sub-join-left2
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f,h,g:a:A fp-> B[a]]. h ⊆ f ⊕ g supposing h ⊆ f
BY
{ (Auto
THEN (InstLemma `fpf-sub_transitivity` [⌜A⌝; ⌜B⌝; ⌜eq⌝; ⌜h⌝; ⌜f⌝; ⌜f ⊕ g⌝])⋅
THEN Auto
THEN (Using [`B2',⌜B⌝] (BLemma `fpf-sub-join-left`)⋅ THEN Auto)⋅) }
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[f,h,g:a:A fp-> B[a]]. h \msubseteq{} f \moplus{} g supposing h \msubseteq{} f
By
Latex:
(Auto
THEN (InstLemma `fpf-sub\_transitivity` [\mkleeneopen{}A\mkleeneclose{}; \mkleeneopen{}B\mkleeneclose{}; \mkleeneopen{}eq\mkleeneclose{}; \mkleeneopen{}h\mkleeneclose{}; \mkleeneopen{}f\mkleeneclose{}; \mkleeneopen{}f \moplus{} g\mkleeneclose{}])\mcdot{}
THEN Auto
THEN (Using [`B2',\mkleeneopen{}B\mkleeneclose{}] (BLemma `fpf-sub-join-left`)\mcdot{} THEN Auto)\mcdot{})
Home
Index