Step
*
of Lemma
fpf-sub-val2
No Annotations
∀[A,A':Type].
∀[B:A ⟶ Type]
∀eq:EqDecider(A'). ∀f,g:a:A fp-> B[a]. ∀x:A'.
∀[P,Q:a:A ⟶ B[a] ⟶ ℙ].
((∀x:A. ∀z:B[x]. (P[x;z]
⇒ Q[x;z]))
⇒ z != f(x) ==> P[x;z]
⇒ z != g(x) ==> Q[x;z] supposing g ⊆ f)
supposing strong-subtype(A;A')
BY
{ Repeat ((D 0 THENA Complete (Auto))) }
1
1. [A] : Type
2. [A'] : Type
3. strong-subtype(A;A')
4. [B] : A ⟶ Type
5. eq : EqDecider(A')@i
6. f : a:A fp-> B[a]@i
7. g : a:A fp-> B[a]@i
8. x : A'@i
9. [P] : a:A ⟶ B[a] ⟶ ℙ
10. [Q] : a:A ⟶ B[a] ⟶ ℙ
11. ∀x:A. ∀z:B[x]. (P[x;z]
⇒ Q[x;z])
12. g ⊆ f
⊢ z != f(x) ==> P[x;z]
⇒ z != g(x) ==> Q[x;z]
Latex:
Latex:
No Annotations
\mforall{}[A,A':Type].
\mforall{}[B:A {}\mrightarrow{} Type]
\mforall{}eq:EqDecider(A'). \mforall{}f,g:a:A fp-> B[a]. \mforall{}x:A'.
\mforall{}[P,Q:a:A {}\mrightarrow{} B[a] {}\mrightarrow{} \mBbbP{}].
((\mforall{}x:A. \mforall{}z:B[x]. (P[x;z] {}\mRightarrow{} Q[x;z]))
{}\mRightarrow{} z != f(x) ==> P[x;z] {}\mRightarrow{} z != g(x) ==> Q[x;z] supposing g \msubseteq{} f)
supposing strong-subtype(A;A')
By
Latex:
Repeat ((D 0 THENA Complete (Auto)))
Home
Index