Step
*
of Lemma
fpf-sub-val
∀[A:Type]. ∀[B:A ⟶ Type].
∀eq:EqDecider(A). ∀f,g:a:A fp-> B[a]. ∀x:A.
∀[P:a:A ⟶ B[a] ⟶ ℙ]. z != f(x) ==> P[x;z]
⇒ z != g(x) ==> P[x;z] supposing g ⊆ f
BY
{ xxx(((Unfolds ``fpf-sub fpf-val`` 0 THEN Auto THEN (InstHyp [⌜x⌝] (-3))⋅) THENA Auto)
THEN ExRepD
THEN ThinTrivial)xxx }
1
1. [A] : Type
2. [B] : A ⟶ Type
3. eq : EqDecider(A)
4. f : a:A fp-> B[a]
5. g : a:A fp-> B[a]
6. x : A
7. [P] : a:A ⟶ B[a] ⟶ ℙ
8. ∀x:A. ((↑x ∈ dom(g))
⇒ ((↑x ∈ dom(f)) c∧ (g(x) = f(x) ∈ B[x])))
9. ↑x ∈ dom(g)
10. ↑x ∈ dom(f)
11. g(x) = f(x) ∈ B[x]
12. P[x;f(x)]
⊢ P[x;g(x)]
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type].
\mforall{}eq:EqDecider(A). \mforall{}f,g:a:A fp-> B[a]. \mforall{}x:A.
\mforall{}[P:a:A {}\mrightarrow{} B[a] {}\mrightarrow{} \mBbbP{}]. z != f(x) ==> P[x;z] {}\mRightarrow{} z != g(x) ==> P[x;z] supposing g \msubseteq{} f
By
Latex:
xxx(((Unfolds ``fpf-sub fpf-val`` 0 THEN Auto THEN (InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-3))\mcdot{}) THENA Auto)
THEN ExRepD
THEN ThinTrivial)xxx
Home
Index