Step
*
1
of Lemma
fpf-type
1. A : Type
2. B : A ⟶ Type
3. f : d:A List × (a:{a:A| (a ∈ d)} ⟶ B[a])
⊢ f ∈ d:{a:A| (a ∈ fpf-domain(f))} List × (a:{a:{a:A| (a ∈ fpf-domain(f))} | (a ∈ d)} ⟶ B[a])
BY
{ xxx(D -1 THEN Unfold `fpf-domain` 0 THEN Reduce 0)xxx }
1
1. A : Type
2. B : A ⟶ Type
3. d : A List
4. f1 : a:{a:A| (a ∈ d)} ⟶ B[a]
⊢ <d, f1> ∈ d@0:{a:A| (a ∈ d)} List × (a:{a:{a:A| (a ∈ d)} | (a ∈ d@0)} ⟶ B[a])
Latex:
Latex:
1. A : Type
2. B : A {}\mrightarrow{} Type
3. f : d:A List \mtimes{} (a:\{a:A| (a \mmember{} d)\} {}\mrightarrow{} B[a])
\mvdash{} f \mmember{} d:\{a:A| (a \mmember{} fpf-domain(f))\} List \mtimes{} (a:\{a:\{a:A| (a \mmember{} fpf-domain(f))\} | (a \mmember{} d)\} {}\mrightarrow{} B[a])
By
Latex:
xxx(D -1 THEN Unfold `fpf-domain` 0 THEN Reduce 0)xxx
Home
Index