Step
*
1
1
1
2
of Lemma
fpf-union-compatible-property
1. [T] : Type
2. [V] : Type
3. eq : EqDecider(T)
4. [X] : T ⟶ Type
5. ∀t:T. (X[t] ⊆r V)
6. R : (V List) ⟶ V ⟶ 𝔹
7. ∀L1,L2:V List. ∀x:V. (L1 ⊆ L2
⇒ ↑(R L1 x) supposing ↑(R L2 x))
8. ∀L1,L2:V List. ∀x:V. (↑(R (L1 @ L2) x)) supposing ((↑(R L2 x)) and (↑(R L1 x)))
9. A : t:T fp-> X[t] List
10. B : t:T fp-> X[t] List
11. C : t:T fp-> X[t] List
12. ∀t:T
((↑t ∈ dom(B))
⇒ (↑t ∈ dom(A))
⇒ (∀a:V
((((a ∈ B(t)) ∧ (¬↑(R A(t) a))) ∨ ((a ∈ A(t)) ∧ (¬↑(R B(t) a))))
⇒ (∃a':X[t]. ((a' = a ∈ V) ∧ (a' ∈ A(t)) ∧ (a' ∈ B(t)))))))
13. ∀t:T
((↑t ∈ dom(A))
⇒ (↑t ∈ dom(C))
⇒ (∀a:V
((((a ∈ A(t)) ∧ (¬↑(R C(t) a))) ∨ ((a ∈ C(t)) ∧ (¬↑(R A(t) a))))
⇒ (∃a':X[t]. ((a' = a ∈ V) ∧ (a' ∈ C(t)) ∧ (a' ∈ A(t)))))))
14. ∀t:T
((↑t ∈ dom(B))
⇒ (↑t ∈ dom(C))
⇒ (∀a:V
((((a ∈ B(t)) ∧ (¬↑(R C(t) a))) ∨ ((a ∈ C(t)) ∧ (¬↑(R B(t) a))))
⇒ (∃a':X[t]. ((a' = a ∈ V) ∧ (a' ∈ C(t)) ∧ (a' ∈ B(t)))))))
15. t : T
16. X[t] ⊆r V
17. (↑t ∈ dom(A)) ∨ (↑t ∈ dom(B))
18. ↑t ∈ dom(C)
19. a : V
20. ↑t ∈ dom(A)
21. ↑t ∈ dom(B)
22. (a ∈ B(t)) ∧ (↑(R A(t) a))
23. ¬↑(R C(t) a)
24. (a ∈ B(t)) ∧ (↑(R A(t) a))
25. ∃a':X[t]. ((a' = a ∈ V) ∧ (a' ∈ C(t)) ∧ (a' ∈ B(t)))
⊢ ∃a':X[t]. ((a' = a ∈ V) ∧ (a' ∈ C(t)) ∧ (a' ∈ A(t) @ filter(R A(t);B(t))))
BY
{ (ParallelLast THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. [V] : Type
3. eq : EqDecider(T)
4. [X] : T {}\mrightarrow{} Type
5. \mforall{}t:T. (X[t] \msubseteq{}r V)
6. R : (V List) {}\mrightarrow{} V {}\mrightarrow{} \mBbbB{}
7. \mforall{}L1,L2:V List. \mforall{}x:V. (L1 \msubseteq{} L2 {}\mRightarrow{} \muparrow{}(R L1 x) supposing \muparrow{}(R L2 x))
8. \mforall{}L1,L2:V List. \mforall{}x:V. (\muparrow{}(R (L1 @ L2) x)) supposing ((\muparrow{}(R L2 x)) and (\muparrow{}(R L1 x)))
9. A : t:T fp-> X[t] List
10. B : t:T fp-> X[t] List
11. C : t:T fp-> X[t] List
12. \mforall{}t:T
((\muparrow{}t \mmember{} dom(B))
{}\mRightarrow{} (\muparrow{}t \mmember{} dom(A))
{}\mRightarrow{} (\mforall{}a:V
((((a \mmember{} B(t)) \mwedge{} (\mneg{}\muparrow{}(R A(t) a))) \mvee{} ((a \mmember{} A(t)) \mwedge{} (\mneg{}\muparrow{}(R B(t) a))))
{}\mRightarrow{} (\mexists{}a':X[t]. ((a' = a) \mwedge{} (a' \mmember{} A(t)) \mwedge{} (a' \mmember{} B(t)))))))
13. \mforall{}t:T
((\muparrow{}t \mmember{} dom(A))
{}\mRightarrow{} (\muparrow{}t \mmember{} dom(C))
{}\mRightarrow{} (\mforall{}a:V
((((a \mmember{} A(t)) \mwedge{} (\mneg{}\muparrow{}(R C(t) a))) \mvee{} ((a \mmember{} C(t)) \mwedge{} (\mneg{}\muparrow{}(R A(t) a))))
{}\mRightarrow{} (\mexists{}a':X[t]. ((a' = a) \mwedge{} (a' \mmember{} C(t)) \mwedge{} (a' \mmember{} A(t)))))))
14. \mforall{}t:T
((\muparrow{}t \mmember{} dom(B))
{}\mRightarrow{} (\muparrow{}t \mmember{} dom(C))
{}\mRightarrow{} (\mforall{}a:V
((((a \mmember{} B(t)) \mwedge{} (\mneg{}\muparrow{}(R C(t) a))) \mvee{} ((a \mmember{} C(t)) \mwedge{} (\mneg{}\muparrow{}(R B(t) a))))
{}\mRightarrow{} (\mexists{}a':X[t]. ((a' = a) \mwedge{} (a' \mmember{} C(t)) \mwedge{} (a' \mmember{} B(t)))))))
15. t : T
16. X[t] \msubseteq{}r V
17. (\muparrow{}t \mmember{} dom(A)) \mvee{} (\muparrow{}t \mmember{} dom(B))
18. \muparrow{}t \mmember{} dom(C)
19. a : V
20. \muparrow{}t \mmember{} dom(A)
21. \muparrow{}t \mmember{} dom(B)
22. (a \mmember{} B(t)) \mwedge{} (\muparrow{}(R A(t) a))
23. \mneg{}\muparrow{}(R C(t) a)
24. (a \mmember{} B(t)) \mwedge{} (\muparrow{}(R A(t) a))
25. \mexists{}a':X[t]. ((a' = a) \mwedge{} (a' \mmember{} C(t)) \mwedge{} (a' \mmember{} B(t)))
\mvdash{} \mexists{}a':X[t]. ((a' = a) \mwedge{} (a' \mmember{} C(t)) \mwedge{} (a' \mmember{} A(t) @ filter(R A(t);B(t))))
By
Latex:
(ParallelLast THEN Auto)
Home
Index