Step
*
of Lemma
fpf-union-compatible_wf
∀[A,C:Type]. ∀[B:A ⟶ Type].
∀[eq:EqDecider(A)]. ∀[f,g:x:A fp-> B[x] List]. ∀[R:(C List) ⟶ C ⟶ 𝔹].
(fpf-union-compatible(A;C;x.B[x];eq;R;f;g) ∈ ℙ)
supposing ∀x:A. (B[x] ⊆r C)
BY
{ xxx(Auto
THEN Unfold `fpf-union-compatible` 0
THEN All (Unfold `so_apply`)
THEN Auto
THEN Try ((DoSubsume THEN Auto THEN SubtypeReasoning THEN Auto)))xxx }
Latex:
Latex:
\mforall{}[A,C:Type]. \mforall{}[B:A {}\mrightarrow{} Type].
\mforall{}[eq:EqDecider(A)]. \mforall{}[f,g:x:A fp-> B[x] List]. \mforall{}[R:(C List) {}\mrightarrow{} C {}\mrightarrow{} \mBbbB{}].
(fpf-union-compatible(A;C;x.B[x];eq;R;f;g) \mmember{} \mBbbP{})
supposing \mforall{}x:A. (B[x] \msubseteq{}r C)
By
Latex:
xxx(Auto
THEN Unfold `fpf-union-compatible` 0
THEN All (Unfold `so\_apply`)
THEN Auto
THEN Try ((DoSubsume THEN Auto THEN SubtypeReasoning THEN Auto)))xxx
Home
Index