Step
*
1
1
1
of Lemma
fpf-union-contains2
1. [A] : Type
2. [V] : Type
3. [B] : A ⟶ Type
4. ∀a:A. ((B a) ⊆r V)
5. eq : EqDecider(A)
6. f : x:A fp-> (B x) List
7. g : x:A fp-> (B x) List
8. fpf-single-valued(A;eq;x.B x;V;g)
9. x : A
10. R : (V List) ⟶ V ⟶ 𝔹
11. fpf-union-compatible(A;V;x.B x;eq;R;f;g)
12. ↑x ∈ dom(g)
13. ↑x ∈ dom(f)
14. (B x) ⊆r V
15. a : B x
16. (a ∈ g(x))
17. ¬↑(R f(x) a)
⊢ (a ∈ f(x))
BY
{ (OnMaybeHyp 11 (\h. (Unfold `fpf-union-compatible` h THEN (InstHyp [⌜x⌝;⌜a⌝] h⋅ THENA Auto))⋅)
THEN ExRepD
THEN Subst ⌜a = a' ∈ B[x]⌝ 0⋅
THEN Try (Complete (Auto))) }
1
.....equality.....
1. A : Type
2. V : Type
3. B : A ⟶ Type
4. ∀a:A. ((B a) ⊆r V)
5. eq : EqDecider(A)
6. f : x:A fp-> (B x) List
7. g : x:A fp-> (B x) List
8. fpf-single-valued(A;eq;x.B x;V;g)
9. x : A
10. R : (V List) ⟶ V ⟶ 𝔹
11. ∀x:A
((↑x ∈ dom(g))
⇒ (↑x ∈ dom(f))
⇒ (∀a:V
((((a ∈ g(x)) ∧ (¬↑(R f(x) a))) ∨ ((a ∈ f(x)) ∧ (¬↑(R g(x) a))))
⇒ (∃a':B x. ((a' = a ∈ V) ∧ (a' ∈ f(x)) ∧ (a' ∈ g(x)))))))
12. ↑x ∈ dom(g)
13. ↑x ∈ dom(f)
14. (B x) ⊆r V
15. a : B x
16. (a ∈ g(x))
17. ¬↑(R f(x) a)
18. a' : B x
19. a' = a ∈ V
20. (a' ∈ f(x))
21. (a' ∈ g(x))
⊢ a = a' ∈ B[x]
Latex:
Latex:
1. [A] : Type
2. [V] : Type
3. [B] : A {}\mrightarrow{} Type
4. \mforall{}a:A. ((B a) \msubseteq{}r V)
5. eq : EqDecider(A)
6. f : x:A fp-> (B x) List
7. g : x:A fp-> (B x) List
8. fpf-single-valued(A;eq;x.B x;V;g)
9. x : A
10. R : (V List) {}\mrightarrow{} V {}\mrightarrow{} \mBbbB{}
11. fpf-union-compatible(A;V;x.B x;eq;R;f;g)
12. \muparrow{}x \mmember{} dom(g)
13. \muparrow{}x \mmember{} dom(f)
14. (B x) \msubseteq{}r V
15. a : B x
16. (a \mmember{} g(x))
17. \mneg{}\muparrow{}(R f(x) a)
\mvdash{} (a \mmember{} f(x))
By
Latex:
(OnMaybeHyp 11 (\mbackslash{}h. (Unfold `fpf-union-compatible` h THEN (InstHyp [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}] h\mcdot{} THENA Auto))\mcdot{})
THEN ExRepD
THEN Subst \mkleeneopen{}a = a'\mkleeneclose{} 0\mcdot{}
THEN Try (Complete (Auto)))
Home
Index