Step
*
of Lemma
member-fpf-vals2
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[P:A ⟶ 𝔹]. ∀[f:x:A fp-> B[x]]. ∀[x:{a:A| ↑(P a)} ]. ∀[v:B[x]].
{(↑x ∈ dom(f)) ∧ (v = f(x) ∈ B[x])} supposing (<x, v> ∈ fpf-vals(eq;P;f))
BY
{ xxx(Intros
THEN UseWitness ⌜<Ax, Ax>⌝⋅
THEN ((InstLemma `member-fpf-vals` [⌜A⌝; ⌜eq⌝; ⌜B⌝; ⌜P⌝; ⌜f⌝; ⌜x⌝; ⌜v⌝])⋅ THENA Auto)
THEN (D (-1))
THEN (Thin (-1))
THEN (D (-1)))xxx }
1
.....antecedent.....
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. P : A ⟶ 𝔹
5. f : x:A fp-> B[x]
6. x : {a:A| ↑(P a)}
7. v : B[x]
8. (<x, v> ∈ fpf-vals(eq;P;f))
⊢ (<x, v> ∈ fpf-vals(eq;P;f))
2
1. A : Type
2. eq : EqDecider(A)
3. B : A ⟶ Type
4. P : A ⟶ 𝔹
5. f : x:A fp-> B[x]
6. x : {a:A| ↑(P a)}
7. v : B[x]
8. (<x, v> ∈ fpf-vals(eq;P;f))
9. {((↑x ∈ dom(f)) ∧ (↑(P x))) ∧ (v = f(x) ∈ B[x])}
⊢ <Ax, Ax> ∈ {(↑x ∈ dom(f)) ∧ (v = f(x) ∈ B[x])}
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[P:A {}\mrightarrow{} \mBbbB{}]. \mforall{}[f:x:A fp-> B[x]]. \mforall{}[x:\{a:A| \muparrow{}(P a)\} ].
\mforall{}[v:B[x]].
\{(\muparrow{}x \mmember{} dom(f)) \mwedge{} (v = f(x))\} supposing (<x, v> \mmember{} fpf-vals(eq;P;f))
By
Latex:
xxx(Intros
THEN UseWitness \mkleeneopen{}<Ax, Ax>\mkleeneclose{}\mcdot{}
THEN ((InstLemma `member-fpf-vals` [\mkleeneopen{}A\mkleeneclose{}; \mkleeneopen{}eq\mkleeneclose{}; \mkleeneopen{}B\mkleeneclose{}; \mkleeneopen{}P\mkleeneclose{}; \mkleeneopen{}f\mkleeneclose{}; \mkleeneopen{}x\mkleeneclose{}; \mkleeneopen{}v\mkleeneclose{}])\mcdot{} THENA Auto)
THEN (D (-1))
THEN (Thin (-1))
THEN (D (-1)))xxx
Home
Index