Step
*
of Lemma
fg-hom_wf
No Annotations
∀[X:Type]. ∀[G:Group{i}]. ∀[f:X ⟶ |G|]. ∀[w:free-word(X)]. (fg-hom(G;f;w) ∈ |G|)
BY
{ (Auto THEN Assert ⌜∀w2,w:(X + X) List. ((λx,y. word-rel(X;x;y)^* w2 w)
⇒ (fg-hom(G;f;w2) = fg-hom(G;f;w) ∈ |G|))⌝⋅) \000C}
1
.....assertion.....
1. X : Type
2. G : Group{i}
3. f : X ⟶ |G|
4. w : free-word(X)
⊢ ∀w2,w:(X + X) List. ((λx,y. word-rel(X;x;y)^* w2 w)
⇒ (fg-hom(G;f;w2) = fg-hom(G;f;w) ∈ |G|))
2
1. X : Type
2. G : Group{i}
3. f : X ⟶ |G|
4. w : free-word(X)
5. ∀w2,w:(X + X) List. ((λx,y. word-rel(X;x;y)^* w2 w)
⇒ (fg-hom(G;f;w2) = fg-hom(G;f;w) ∈ |G|))
⊢ fg-hom(G;f;w) ∈ |G|
Latex:
Latex:
No Annotations
\mforall{}[X:Type]. \mforall{}[G:Group\{i\}]. \mforall{}[f:X {}\mrightarrow{} |G|]. \mforall{}[w:free-word(X)]. (fg-hom(G;f;w) \mmember{} |G|)
By
Latex:
(Auto
THEN Assert \mkleeneopen{}\mforall{}w2,w:(X + X) List. ((\mlambda{}x,y. word-rel(X;x;y)\^{}* w2 w) {}\mRightarrow{} (fg-hom(G;f;w2) = fg-hom(G;f;w\000C)))\mkleeneclose{}
\mcdot{}
)
Home
Index