Step
*
2
3
of Lemma
free-group-functor_wf
1. X : Type@i'
2. Y : Type@i'
3. z : Type@i'
4. f : X ⟶ Y@i'
5. g : Y ⟶ z@i'
6. x : X@i
⊢ (fg-lift(free-group(z);λx@0.free-letter(g (f x@0))) free-letter(x))
= ((fg-lift(free-group(z);λx.free-letter(g x)) o fg-lift(free-group(Y);λx.free-letter(f x))) free-letter(x))
∈ |free-group(z)|
BY
{ (RepUR ``free-letter fg-lift fg-hom free-word-inv free-0 free-append`` 0 THEN Fold `free-letter` 0) }
1
1. X : Type@i'
2. Y : Type@i'
3. z : Type@i'
4. f : X ⟶ Y@i'
5. g : Y ⟶ z@i'
6. x : X@i
⊢ free-letter(g (f x)) = free-letter(g (f x)) ∈ free-word(z)
Latex:
Latex:
1. X : Type@i'
2. Y : Type@i'
3. z : Type@i'
4. f : X {}\mrightarrow{} Y@i'
5. g : Y {}\mrightarrow{} z@i'
6. x : X@i
\mvdash{} (fg-lift(free-group(z);\mlambda{}x@0.free-letter(g (f x@0))) free-letter(x))
= ((fg-lift(free-group(z);\mlambda{}x.free-letter(g x)) o fg-lift(free-group(Y);\mlambda{}x.free-letter(f x)))
free-letter(x))
By
Latex:
(RepUR ``free-letter fg-lift fg-hom free-word-inv free-0 free-append`` 0 THEN Fold `free-letter` 0)
Home
Index