Step
*
2
of Lemma
free-word-inv-append2
1. X : Type
2. (X + X) List ∈ Type
3. ∀w1,w2:(X + X) List. (word-equiv(X;w1;w2) ∈ Type)
4. ∀w1:(X + X) List. word-equiv(X;w1;w1)
5. EquivRel((X + X) List;w1,w2.word-equiv(X;w1;w2))
6. w1 : (X + X) List@i
7. w2 : (X + X) List@i
8. word-equiv(X;w1;w2)
9. free-word(X) = free-word(X) ∈ Type
10. ∀w:(X + X) List. (free-word-inv(w) ∈ (X + X) List)
11. λx,y. word-rel(X;x;y)^* (w1 @ free-word-inv(w1)) []
⊢ λx,y. word-rel(X;x;y)^* [] []
BY
{ (RepUR ``transitive-reflexive-closure`` 0 THEN Auto) }
Latex:
Latex:
1. X : Type
2. (X + X) List \mmember{} Type
3. \mforall{}w1,w2:(X + X) List. (word-equiv(X;w1;w2) \mmember{} Type)
4. \mforall{}w1:(X + X) List. word-equiv(X;w1;w1)
5. EquivRel((X + X) List;w1,w2.word-equiv(X;w1;w2))
6. w1 : (X + X) List@i
7. w2 : (X + X) List@i
8. word-equiv(X;w1;w2)
9. free-word(X) = free-word(X)
10. \mforall{}w:(X + X) List. (free-word-inv(w) \mmember{} (X + X) List)
11. \mlambda{}x,y. word-rel(X;x;y)\^{}* (w1 @ free-word-inv(w1)) []
\mvdash{} \mlambda{}x,y. word-rel(X;x;y)\^{}* [] []
By
Latex:
(RepUR ``transitive-reflexive-closure`` 0 THEN Auto)
Home
Index