Step
*
1
1
2
2
2
of Lemma
word-rel-diamond
1. [X] : Type
2. n : ℕ
3. x : (X + X) List@i
4. ∀x1:(X + X) List
(||x1|| < ||x||
⇒ (∀y,z:(X + X) List.
(word-rel(X;x1;y)
⇒ word-rel(X;x1;z)
⇒ ((y = z ∈ ((X + X) List)) ∨ (∃w:(X + X) List. (word-rel(X;y;w) ∧ word-rel(X;z;w)))))))
5. y : (X + X) List@i
6. z : (X + X) List@i
7. x@0 : X + X@i
8. y@0 : X + X@i
9. b1 : (X + X) List@i
10. x@0 = -y@0
11. x = [x@0; [y@0 / b1]] ∈ ((X + X) List)
12. y = b1 ∈ ((X + X) List)
13. x1 : X + X@i
14. y1 : X + X@i
15. u : X + X
16. u1 : X + X
17. v : (X + X) List
18. b : (X + X) List@i
19. x1 = -y1
20. x = [u; [u1 / (v @ [x1; [y1 / b]])]] ∈ ((X + X) List)
21. z = [u; [u1 / (v @ b)]] ∈ ((X + X) List)
22. x@0 = u ∈ (X + X)
23. y@0 = u1 ∈ (X + X)
24. b1 = (v @ [x1; [y1 / b]]) ∈ ((X + X) List)
25. word-rel(X;b1;v @ b)
⊢ ∃x,y:X + X
∃a,b@0:(X + X) List
(x = -y ∧ ([u; [u1 / (v @ b)]] = (a @ [x; y] @ b@0) ∈ ((X + X) List)) ∧ ((v @ b) = (a @ b@0) ∈ ((X + X) List)))
BY
{ (InstConcl [⌜u⌝;⌜u1⌝;⌜[]⌝;⌜v @ b⌝]⋅ THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. n : \mBbbN{}
3. x : (X + X) List@i
4. \mforall{}x1:(X + X) List
(||x1|| < ||x||
{}\mRightarrow{} (\mforall{}y,z:(X + X) List.
(word-rel(X;x1;y)
{}\mRightarrow{} word-rel(X;x1;z)
{}\mRightarrow{} ((y = z) \mvee{} (\mexists{}w:(X + X) List. (word-rel(X;y;w) \mwedge{} word-rel(X;z;w)))))))
5. y : (X + X) List@i
6. z : (X + X) List@i
7. x@0 : X + X@i
8. y@0 : X + X@i
9. b1 : (X + X) List@i
10. x@0 = -y@0
11. x = [x@0; [y@0 / b1]]
12. y = b1
13. x1 : X + X@i
14. y1 : X + X@i
15. u : X + X
16. u1 : X + X
17. v : (X + X) List
18. b : (X + X) List@i
19. x1 = -y1
20. x = [u; [u1 / (v @ [x1; [y1 / b]])]]
21. z = [u; [u1 / (v @ b)]]
22. x@0 = u
23. y@0 = u1
24. b1 = (v @ [x1; [y1 / b]])
25. word-rel(X;b1;v @ b)
\mvdash{} \mexists{}x,y:X + X
\mexists{}a,b@0:(X + X) List
(x = -y \mwedge{} ([u; [u1 / (v @ b)]] = (a @ [x; y] @ b@0)) \mwedge{} ((v @ b) = (a @ b@0)))
By
Latex:
(InstConcl [\mkleeneopen{}u\mkleeneclose{};\mkleeneopen{}u1\mkleeneclose{};\mkleeneopen{}[]\mkleeneclose{};\mkleeneopen{}v @ b\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index