Step
*
2
of Lemma
adjacent-cons
1. [T] : Type
2. x : T
3. y : T
4. u : T
5. L : T List
6. 0 < ||L||
7. ((x = u ∈ T) ∧ (y = hd(L) ∈ T)) ∨ (∃i:ℕ||L|| - 1. ((x = L[i] ∈ T) ∧ (y = L[i + 1] ∈ T)))
⊢ ∃i:ℕ(||L|| + 1) - 1. ((x = [u / L][i] ∈ T) ∧ (y = [u / L][i + 1] ∈ T))
BY
{ D (-1) }
1
1. [T] : Type
2. x : T
3. y : T
4. u : T
5. L : T List
6. 0 < ||L||
7. (x = u ∈ T) ∧ (y = hd(L) ∈ T)
⊢ ∃i:ℕ(||L|| + 1) - 1. ((x = [u / L][i] ∈ T) ∧ (y = [u / L][i + 1] ∈ T))
2
1. [T] : Type
2. x : T
3. y : T
4. u : T
5. L : T List
6. 0 < ||L||
7. ∃i:ℕ||L|| - 1. ((x = L[i] ∈ T) ∧ (y = L[i + 1] ∈ T))
⊢ ∃i:ℕ(||L|| + 1) - 1. ((x = [u / L][i] ∈ T) ∧ (y = [u / L][i + 1] ∈ T))
Latex:
Latex:
1. [T] : Type
2. x : T
3. y : T
4. u : T
5. L : T List
6. 0 < ||L||
7. ((x = u) \mwedge{} (y = hd(L))) \mvee{} (\mexists{}i:\mBbbN{}||L|| - 1. ((x = L[i]) \mwedge{} (y = L[i + 1])))
\mvdash{} \mexists{}i:\mBbbN{}(||L|| + 1) - 1. ((x = [u / L][i]) \mwedge{} (y = [u / L][i + 1]))
By
Latex:
D (-1)
Home
Index