Step
*
2
of Lemma
adjacent-reverse
1. [T] : Type
2. u : T
3. v : T List
4. ∀x,y:T. (adjacent(T;rev(v);x;y)
⇐⇒ adjacent(T;v;y;x))
⊢ ∀x,y:T. (adjacent(T;rev(v) @ [u];x;y)
⇐⇒ adjacent(T;[u / v];y;x))
BY
{ RepeatFor 2 (ParallelLast) }
1
1. [T] : Type
2. u : T
3. v : T List
4. x : T
5. y : T
6. adjacent(T;rev(v);x;y)
⇐⇒ adjacent(T;v;y;x)
⊢ adjacent(T;rev(v) @ [u];x;y)
⇐⇒ adjacent(T;[u / v];y;x)
Latex:
Latex:
1. [T] : Type
2. u : T
3. v : T List
4. \mforall{}x,y:T. (adjacent(T;rev(v);x;y) \mLeftarrow{}{}\mRightarrow{} adjacent(T;v;y;x))
\mvdash{} \mforall{}x,y:T. (adjacent(T;rev(v) @ [u];x;y) \mLeftarrow{}{}\mRightarrow{} adjacent(T;[u / v];y;x))
By
Latex:
RepeatFor 2 (ParallelLast)
Home
Index