Step
*
1
of Lemma
combinations_aux_rem_property
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ]. (combinations_aux_rem(b rem k;n - 1;m;k) = (combinations_aux(b;n - 1;m) rem k) ∈ ℤ)
5. b : ℕ
6. m : ℕ
7. ¬(n = 0 ∈ ℤ)
⊢ combinations_aux_rem((b rem k) * m rem k;n - 1;m - 1;k) = (combinations_aux(b * m;n - 1;m - 1) rem k) ∈ ℤ
BY
{ CaseNat 0 `m' }
1
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ]. (combinations_aux_rem(b rem k;n - 1;m;k) = (combinations_aux(b;n - 1;m) rem k) ∈ ℤ)
5. b : ℕ
6. m : ℕ
7. ¬(n = 0 ∈ ℤ)
8. m = 0 ∈ ℤ
⊢ combinations_aux_rem((b rem k) * 0 rem k;n - 1;0 - 1;k) = (combinations_aux(b * 0;n - 1;0 - 1) rem k) ∈ ℤ
2
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ]. (combinations_aux_rem(b rem k;n - 1;m;k) = (combinations_aux(b;n - 1;m) rem k) ∈ ℤ)
5. b : ℕ
6. m : ℕ
7. ¬(n = 0 ∈ ℤ)
8. ¬(m = 0 ∈ ℤ)
⊢ combinations_aux_rem((b rem k) * m rem k;n - 1;m - 1;k) = (combinations_aux(b * m;n - 1;m - 1) rem k) ∈ ℤ
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}[b,m:\mBbbN{}]. (combinations\_aux\_rem(b rem k;n - 1;m;k) = (combinations\_aux(b;n - 1;m) rem k))
5. b : \mBbbN{}
6. m : \mBbbN{}
7. \mneg{}(n = 0)
\mvdash{} combinations\_aux\_rem((b rem k) * m rem k;n - 1;m - 1;k)
= (combinations\_aux(b * m;n - 1;m - 1) rem k)
By
Latex:
CaseNat 0 `m'
Home
Index