Step
*
1
2
of Lemma
continuous'-monotone-bunion
1. F : Type ⟶ Type
2. G : Type ⟶ Type
3. ∀[A,B:Type]. (F A) ⊆r (F B) supposing A ⊆r B
4. ∀[X:type-incr-chain{i:l}()]. ((F ⋃n:ℕ.(X n)) ⊆r ⋃n:ℕ.(F (X n)))
5. ∀[A,B:Type]. (G A) ⊆r (G B) supposing A ⊆r B
6. ∀[X:type-incr-chain{i:l}()]. ((G ⋃n:ℕ.(X n)) ⊆r ⋃n:ℕ.(G (X n)))
7. ∀[A,B:Type]. ((F A) ⋃ (G A)) ⊆r ((F B) ⋃ (G B)) supposing A ⊆r B
8. X : type-incr-chain{i:l}()
9. a1 : G ⋃n:ℕ.(X n)@i
⊢ a1 ∈ ⋃n:ℕ.((F (X n)) ⋃ (G (X n)))
BY
{ (RenameVar `z' (-1)
THEN (Assert ⌜z ∈ ⋃n:ℕ.(G (X n))⌝⋅ THENA Auto)
THEN Assert ⌜⋃n:ℕ.(G (X n)) ⊆r ⋃n:ℕ.((F (X n)) ⋃ (G (X n)))⌝⋅
THEN Auto) }
Latex:
Latex:
1. F : Type {}\mrightarrow{} Type
2. G : Type {}\mrightarrow{} Type
3. \mforall{}[A,B:Type]. (F A) \msubseteq{}r (F B) supposing A \msubseteq{}r B
4. \mforall{}[X:type-incr-chain\{i:l\}()]. ((F \mcup{}n:\mBbbN{}.(X n)) \msubseteq{}r \mcup{}n:\mBbbN{}.(F (X n)))
5. \mforall{}[A,B:Type]. (G A) \msubseteq{}r (G B) supposing A \msubseteq{}r B
6. \mforall{}[X:type-incr-chain\{i:l\}()]. ((G \mcup{}n:\mBbbN{}.(X n)) \msubseteq{}r \mcup{}n:\mBbbN{}.(G (X n)))
7. \mforall{}[A,B:Type]. ((F A) \mcup{} (G A)) \msubseteq{}r ((F B) \mcup{} (G B)) supposing A \msubseteq{}r B
8. X : type-incr-chain\{i:l\}()
9. a1 : G \mcup{}n:\mBbbN{}.(X n)@i
\mvdash{} a1 \mmember{} \mcup{}n:\mBbbN{}.((F (X n)) \mcup{} (G (X n)))
By
Latex:
(RenameVar `z' (-1)
THEN (Assert \mkleeneopen{}z \mmember{} \mcup{}n:\mBbbN{}.(G (X n))\mkleeneclose{}\mcdot{} THENA Auto)
THEN Assert \mkleeneopen{}\mcup{}n:\mBbbN{}.(G (X n)) \msubseteq{}r \mcup{}n:\mBbbN{}.((F (X n)) \mcup{} (G (X n)))\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index