Step
*
of Lemma
div_nat_induction
∀b:{b:ℤ| 1 < b} . ∀[P:ℕ ⟶ ℙ]. (P[0]
⇒ (∀i:ℕ+. (P[i ÷ b]
⇒ P[i]))
⇒ (∀i:ℕ. P[i]))
BY
{ xxx((GeneralInductionOnNat THENA Auto)
THEN CaseNat 0 `i'
THEN Auto
THEN (Evaluate ⌜j = (i ÷ b) ∈ ℤ⌝⋅ THENA Auto))xxx }
1
1. b : {b:ℤ| 1 < b}
2. [P] : ℕ ⟶ ℙ
3. P[0]
4. ∀i:ℕ+. (P[i ÷ b]
⇒ P[i])
5. i : ℕ
6. ∀i1:ℕi. P[i1]
7. ¬(i = 0 ∈ ℤ)
8. j : ℤ
9. j = (i ÷ b) ∈ ℤ
⊢ P[i]
Latex:
Latex:
\mforall{}b:\{b:\mBbbZ{}| 1 < b\} . \mforall{}[P:\mBbbN{} {}\mrightarrow{} \mBbbP{}]. (P[0] {}\mRightarrow{} (\mforall{}i:\mBbbN{}\msupplus{}. (P[i \mdiv{} b] {}\mRightarrow{} P[i])) {}\mRightarrow{} (\mforall{}i:\mBbbN{}. P[i]))
By
Latex:
xxx((GeneralInductionOnNat THENA Auto)
THEN CaseNat 0 `i'
THEN Auto
THEN (Evaluate \mkleeneopen{}j = (i \mdiv{} b)\mkleeneclose{}\mcdot{} THENA Auto))xxx
Home
Index