Step
*
of Lemma
do-apply-p-co-restrict
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)]. ∀[P:A ⟶ ℙ]. ∀[p:∀x:A. Dec(P[x])]. ∀[x:A].
do-apply(p-co-restrict(f;p);x) = do-apply(f;x) ∈ B supposing ↑can-apply(p-co-restrict(f;p);x)
BY
{ (Unfold `p-co-restrict` 0
THEN Auto
THEN RWO "do-apply-compose" 0
THEN Auto
THEN (RWO "can-apply-compose-iff" (-1))
THEN Auto
THEN RWO "do-apply-p-co-filter" 0
THEN Auto
THEN (All (RWO "do-apply-p-co-filter"))
THEN Auto) }
Latex:
Latex:
\mforall{}[A,B:Type]. \mforall{}[f:A {}\mrightarrow{} (B + Top)]. \mforall{}[P:A {}\mrightarrow{} \mBbbP{}]. \mforall{}[p:\mforall{}x:A. Dec(P[x])]. \mforall{}[x:A].
do-apply(p-co-restrict(f;p);x) = do-apply(f;x) supposing \muparrow{}can-apply(p-co-restrict(f;p);x)
By
Latex:
(Unfold `p-co-restrict` 0
THEN Auto
THEN RWO "do-apply-compose" 0
THEN Auto
THEN (RWO "can-apply-compose-iff" (-1))
THEN Auto
THEN RWO "do-apply-p-co-filter" 0
THEN Auto
THEN (All (RWO "do-apply-p-co-filter"))
THEN Auto)
Home
Index