Step
*
2
2
1
of Lemma
fun-path-append1
1. T : Type
2. f : T ⟶ T
3. u : T
4. u1 : T
5. v : T List
6. ∀[x,y,z:T]. (z=f*(x) via [u1 / v] @ [x]) supposing ((¬(y = x ∈ T)) and (y = (f x) ∈ T) and z=f*(y) via [u1 / v])
7. x : T
8. y : T
9. z : T
10. z=f*(y) via [u; [u1 / v]]
11. y = (f x) ∈ T
12. ¬(y = x ∈ T)
13. z = u ∈ T
14. u = (f u1) ∈ T
15. ¬(u = u1 ∈ T)
16. u1=f*(y) via [u1 / v]
⊢ z=f*(x) via [u / ([u1 / v] @ [x])]
BY
{ xxx((((FLemma `fun-path-cons` [-7]) THENM (Reduce (-1))) THENA Auto)
THENM ((BLemma `fun-path-cons` THENM Reduce 0) THENA Auto)
)xxx }
1
1. T : Type
2. f : T ⟶ T
3. u : T
4. u1 : T
5. v : T List
6. ∀[x,y,z:T]. (z=f*(x) via [u1 / v] @ [x]) supposing ((¬(y = x ∈ T)) and (y = (f x) ∈ T) and z=f*(y) via [u1 / v])
7. x : T
8. y : T
9. z : T
10. z=f*(y) via [u; [u1 / v]]
11. y = (f x) ∈ T
12. ¬(y = x ∈ T)
13. z = u ∈ T
14. u = (f u1) ∈ T
15. ¬(u = u1 ∈ T)
16. u1=f*(y) via [u1 / v]
17. (z = u ∈ T)
∧ ((u = (f u1) ∈ T) ∧ (¬(u = u1 ∈ T))) ∧ u1=f*(y) via [u1 / v] supposing 0 < ||v|| + 1
∧ y = u ∈ T supposing ¬0 < ||v|| + 1
⊢ (z = u ∈ T)
∧ ((u = (f u1) ∈ T) ∧ (¬(u = u1 ∈ T))) ∧ u1=f*(x) via [u1 / (v @ [x])] supposing 0 < ||v @ [x]|| + 1
∧ x = u ∈ T supposing ¬0 < ||v @ [x]|| + 1
Latex:
Latex:
1. T : Type
2. f : T {}\mrightarrow{} T
3. u : T
4. u1 : T
5. v : T List
6. \mforall{}[x,y,z:T].
(z=f*(x) via [u1 / v] @ [x]) supposing ((\mneg{}(y = x)) and (y = (f x)) and z=f*(y) via [u1 / v])
7. x : T
8. y : T
9. z : T
10. z=f*(y) via [u; [u1 / v]]
11. y = (f x)
12. \mneg{}(y = x)
13. z = u
14. u = (f u1)
15. \mneg{}(u = u1)
16. u1=f*(y) via [u1 / v]
\mvdash{} z=f*(x) via [u / ([u1 / v] @ [x])]
By
Latex:
xxx((((FLemma `fun-path-cons` [-7]) THENM (Reduce (-1))) THENA Auto)
THENM ((BLemma `fun-path-cons` THENM Reduce 0) THENA Auto)
)xxx
Home
Index