Step
*
1
2
of Lemma
implies-sum-of-two-squares
1. n : ℕ
2. ∀n:ℕn. ∀x:ℕ.  (0 < x 
⇒ (∃w,y:ℤ. ((n * x * x) = ((w * w) + (y * y)) ∈ ℤ)) 
⇒ (∃a,b:ℤ. (n = ((a * a) + (b * b)) ∈ ℤ)))
3. x : ℕ
4. ∀x:ℕx. (0 < x 
⇒ (∃w,y:ℤ. ((n * x * x) = ((w * w) + (y * y)) ∈ ℤ)) 
⇒ (∃a,b:ℤ. (n = ((a * a) + (b * b)) ∈ ℤ)))
5. 0 < x
6. w : ℤ
7. y : ℤ
8. (n * x * x) = ((w * w) + (y * y)) ∈ ℤ
9. ¬(n = 0 ∈ ℤ)
10. ¬(∃d:ℕ. ((d | n) ∧ (2 ≤ d) ∧ ((d * d) | n)))
⊢ ∃a,b:ℤ. (n = ((a * a) + (b * b)) ∈ ℤ)
BY
{ (Assert ∀p:Prime. ((p | n) 
⇒ (¬((p * p) | n))) BY
         Auto) }
1
1. n : ℕ
2. ∀n:ℕn. ∀x:ℕ.  (0 < x 
⇒ (∃w,y:ℤ. ((n * x * x) = ((w * w) + (y * y)) ∈ ℤ)) 
⇒ (∃a,b:ℤ. (n = ((a * a) + (b * b)) ∈ ℤ)))
3. x : ℕ
4. ∀x:ℕx. (0 < x 
⇒ (∃w,y:ℤ. ((n * x * x) = ((w * w) + (y * y)) ∈ ℤ)) 
⇒ (∃a,b:ℤ. (n = ((a * a) + (b * b)) ∈ ℤ)))
5. 0 < x
6. w : ℤ
7. y : ℤ
8. (n * x * x) = ((w * w) + (y * y)) ∈ ℤ
9. ¬(n = 0 ∈ ℤ)
10. ¬(∃d:ℕ. ((d | n) ∧ (2 ≤ d) ∧ ((d * d) | n)))
11. ∀p:Prime. ((p | n) 
⇒ (¬((p * p) | n)))
⊢ ∃a,b:ℤ. (n = ((a * a) + (b * b)) ∈ ℤ)
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  \mforall{}n:\mBbbN{}n.  \mforall{}x:\mBbbN{}.
          (0  <  x  {}\mRightarrow{}  (\mexists{}w,y:\mBbbZ{}.  ((n  *  x  *  x)  =  ((w  *  w)  +  (y  *  y))))  {}\mRightarrow{}  (\mexists{}a,b:\mBbbZ{}.  (n  =  ((a  *  a)  +  (b  *  b)))))
3.  x  :  \mBbbN{}
4.  \mforall{}x:\mBbbN{}x
          (0  <  x  {}\mRightarrow{}  (\mexists{}w,y:\mBbbZ{}.  ((n  *  x  *  x)  =  ((w  *  w)  +  (y  *  y))))  {}\mRightarrow{}  (\mexists{}a,b:\mBbbZ{}.  (n  =  ((a  *  a)  +  (b  *  b)))))
5.  0  <  x
6.  w  :  \mBbbZ{}
7.  y  :  \mBbbZ{}
8.  (n  *  x  *  x)  =  ((w  *  w)  +  (y  *  y))
9.  \mneg{}(n  =  0)
10.  \mneg{}(\mexists{}d:\mBbbN{}.  ((d  |  n)  \mwedge{}  (2  \mleq{}  d)  \mwedge{}  ((d  *  d)  |  n)))
\mvdash{}  \mexists{}a,b:\mBbbZ{}.  (n  =  ((a  *  a)  +  (b  *  b)))
By
Latex:
(Assert  \mforall{}p:Prime.  ((p  |  n)  {}\mRightarrow{}  (\mneg{}((p  *  p)  |  n)))  BY
              Auto)
Home
Index