Step
*
2
of Lemma
integer-nth-root
1. n : ℕ+
2. b : {b:ℤ| 1 < b}
3. b = 2^n ∈ {b:ℤ| 1 < b}
4. i : ℕ+
5. ∃r:ℕ [((r^n ≤ (i ÷ b)) ∧ i ÷ b < (r + 1)^n)]
⊢ ∃r:ℕ [((r^n ≤ i) ∧ i < (r + 1)^n)]
BY
{ (D -1
THEN (Evaluate ⌜r2 = (2 * r) ∈ ℤ⌝⋅ THENA Auto)
THEN (Evaluate ⌜r2' = (r2 + 1) ∈ ℤ⌝⋅ THENA Auto)
THEN (InstLemma `exp-of-mul` [⌜2⌝;⌜r⌝;⌜n⌝]⋅ THENA Auto)
THEN (InstLemma `exp-of-mul` [⌜2⌝;⌜r + 1⌝;⌜n⌝]⋅ THENA Auto)
THEN ((InstLemma `div_rem_sum` [⌜i⌝; ⌜2^n⌝])⋅ THENA Auto)
THEN (InstLemma `rem_bounds_1` [⌜i⌝; ⌜2^n⌝])⋅
THEN Auto
THEN ((Decide ⌜r2'^n < i + 1⌝⋅ THENA Auto) THEN All (RWO "exp-fastexp<") THEN Auto)) }
1
1. n : ℕ+
2. b : {b:ℤ| 1 < b}
3. b = 2^n ∈ {b:ℤ| 1 < b}
4. i : ℕ+
5. r : ℕ
6. [%6] : (r^n ≤ (i ÷ b)) ∧ i ÷ b < (r + 1)^n
7. r2 : ℤ
8. r2 = (2 * r) ∈ ℤ
9. r2' : ℤ
10. r2' = (r2 + 1) ∈ ℤ
11. (2 * r)^n = (2^n * r^n) ∈ ℤ
12. (2 * (r + 1))^n = (2^n * (r + 1)^n) ∈ ℤ
13. i = (((i ÷ 2^n) * 2^n) + (i rem 2^n)) ∈ ℤ
14. 0 ≤ (i rem 2^n)
15. i rem 2^n < 2^n
16. r2'^n < i + 1
⊢ ∃r:ℕ [((r^n ≤ i) ∧ i < (r + 1)^n)]
2
1. n : ℕ+
2. b : {b:ℤ| 1 < b}
3. b = 2^n ∈ {b:ℤ| 1 < b}
4. i : ℕ+
5. r : ℕ
6. [%6] : (r^n ≤ (i ÷ b)) ∧ i ÷ b < (r + 1)^n
7. r2 : ℤ
8. r2 = (2 * r) ∈ ℤ
9. r2' : ℤ
10. r2' = (r2 + 1) ∈ ℤ
11. (2 * r)^n = (2^n * r^n) ∈ ℤ
12. (2 * (r + 1))^n = (2^n * (r + 1)^n) ∈ ℤ
13. i = (((i ÷ 2^n) * 2^n) + (i rem 2^n)) ∈ ℤ
14. 0 ≤ (i rem 2^n)
15. i rem 2^n < 2^n
16. ¬r2'^n < i + 1
⊢ ∃r:ℕ [((r^n ≤ i) ∧ i < (r + 1)^n)]
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. b : \{b:\mBbbZ{}| 1 < b\}
3. b = 2\^{}n
4. i : \mBbbN{}\msupplus{}
5. \mexists{}r:\mBbbN{} [((r\^{}n \mleq{} (i \mdiv{} b)) \mwedge{} i \mdiv{} b < (r + 1)\^{}n)]
\mvdash{} \mexists{}r:\mBbbN{} [((r\^{}n \mleq{} i) \mwedge{} i < (r + 1)\^{}n)]
By
Latex:
(D -1
THEN (Evaluate \mkleeneopen{}r2 = (2 * r)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (Evaluate \mkleeneopen{}r2' = (r2 + 1)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (InstLemma `exp-of-mul` [\mkleeneopen{}2\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `exp-of-mul` [\mkleeneopen{}2\mkleeneclose{};\mkleeneopen{}r + 1\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ((InstLemma `div\_rem\_sum` [\mkleeneopen{}i\mkleeneclose{}; \mkleeneopen{}2\^{}n\mkleeneclose{}])\mcdot{} THENA Auto)
THEN (InstLemma `rem\_bounds\_1` [\mkleeneopen{}i\mkleeneclose{}; \mkleeneopen{}2\^{}n\mkleeneclose{}])\mcdot{}
THEN Auto
THEN ((Decide \mkleeneopen{}r2'\^{}n < i + 1\mkleeneclose{}\mcdot{} THENA Auto) THEN All (RWO "exp-fastexp<") THEN Auto))
Home
Index