Step
*
1
of Lemma
red-black-example
1. [A] : Type
2. [D] : Type
3. [Red] : D ⟶ ℙ
4. [Black] : D ⟶ ℙ
5. [R] : D ⟶ D ⟶ ℙ
6. ∀x:D. (Red[x] ∨ Black[x])
7. ∀x,y,z:D. (R[x;y]
⇒ R[y;z]
⇒ R[x;z])
8. ∀x:D. (R[x;x]
⇒ A)
9. ∀x:D. (Red[x]
⇒ (∃y:D. (Black[y] ∧ R[x;y])))
10. ∀x:D. (Black[x]
⇒ (∃y:D. (Red[y] ∧ R[x;y])))
11. m : D
12. ∀x:D. (Red[x]
⇒ R[x;m])
13. Red[m]
⊢ A
BY
{ ((FHyp (-2) [-1] THENM ExRepD) THEN Auto) }
Latex:
Latex:
1. [A] : Type
2. [D] : Type
3. [Red] : D {}\mrightarrow{} \mBbbP{}
4. [Black] : D {}\mrightarrow{} \mBbbP{}
5. [R] : D {}\mrightarrow{} D {}\mrightarrow{} \mBbbP{}
6. \mforall{}x:D. (Red[x] \mvee{} Black[x])
7. \mforall{}x,y,z:D. (R[x;y] {}\mRightarrow{} R[y;z] {}\mRightarrow{} R[x;z])
8. \mforall{}x:D. (R[x;x] {}\mRightarrow{} A)
9. \mforall{}x:D. (Red[x] {}\mRightarrow{} (\mexists{}y:D. (Black[y] \mwedge{} R[x;y])))
10. \mforall{}x:D. (Black[x] {}\mRightarrow{} (\mexists{}y:D. (Red[y] \mwedge{} R[x;y])))
11. m : D
12. \mforall{}x:D. (Red[x] {}\mRightarrow{} R[x;m])
13. Red[m]
\mvdash{} A
By
Latex:
((FHyp (-2) [-1] THENM ExRepD) THEN Auto)
Home
Index