Step
*
1
1
2
1
1
of Lemma
wilson-theorem
1. n : {i:ℤ| 1 < i}
2. prime(n)
3. ∀b:ℕn. ((rotate-by(n;1) (rotate-by(n;n - 1) b)) = b ∈ ℕn)
4. ∀b:ℕn. ((rotate-by(n;n - 1) (rotate-by(n;1) b)) = b ∈ ℕn)
5. cyclic-map(ℕn) ~ ℕ(n - 1)!
6. a1 : cyclic-map(ℕn)
7. a2 : cyclic-map(ℕn)
8. (rotate-by(n;n - 1) o (a1 o rotate-by(n;1))) = (rotate-by(n;n - 1) o (a2 o rotate-by(n;1))) ∈ cyclic-map(ℕn)
9. (rotate-by(n;1) o ((rotate-by(n;n - 1) o (a1 o rotate-by(n;1))) o rotate-by(n;n - 1)))
= (rotate-by(n;1) o ((rotate-by(n;n - 1) o (a2 o rotate-by(n;1))) o rotate-by(n;n - 1)))
∈ cyclic-map(ℕn)
⊢ a1 = a2 ∈ cyclic-map(ℕn)
BY
{ (DVar `a1' THEN DVar `a2' THEN EqTypeCD THEN Try (Complete (Auto))) }
1
1. n : {i:ℤ| 1 < i}
2. prime(n)
3. ∀b:ℕn. ((rotate-by(n;1) (rotate-by(n;n - 1) b)) = b ∈ ℕn)
4. ∀b:ℕn. ((rotate-by(n;n - 1) (rotate-by(n;1) b)) = b ∈ ℕn)
5. cyclic-map(ℕn) ~ ℕ(n - 1)!
6. a1 : ℕn →⟶ ℕn
7. ∀x,y:ℕn. ∃n@0:ℕ. ((a1^n@0 x) = y ∈ ℕn)
8. a2 : ℕn →⟶ ℕn
9. ∀x,y:ℕn. ∃n@0:ℕ. ((a2^n@0 x) = y ∈ ℕn)
10. (rotate-by(n;n - 1) o (a1 o rotate-by(n;1))) = (rotate-by(n;n - 1) o (a2 o rotate-by(n;1))) ∈ cyclic-map(ℕn)
11. (rotate-by(n;1) o ((rotate-by(n;n - 1) o (a1 o rotate-by(n;1))) o rotate-by(n;n - 1)))
= (rotate-by(n;1) o ((rotate-by(n;n - 1) o (a2 o rotate-by(n;1))) o rotate-by(n;n - 1)))
∈ cyclic-map(ℕn)
⊢ a1 = a2 ∈ ℕn →⟶ ℕn
Latex:
Latex:
1. n : \{i:\mBbbZ{}| 1 < i\}
2. prime(n)
3. \mforall{}b:\mBbbN{}n. ((rotate-by(n;1) (rotate-by(n;n - 1) b)) = b)
4. \mforall{}b:\mBbbN{}n. ((rotate-by(n;n - 1) (rotate-by(n;1) b)) = b)
5. cyclic-map(\mBbbN{}n) \msim{} \mBbbN{}(n - 1)!
6. a1 : cyclic-map(\mBbbN{}n)
7. a2 : cyclic-map(\mBbbN{}n)
8. (rotate-by(n;n - 1) o (a1 o rotate-by(n;1))) = (rotate-by(n;n - 1) o (a2 o rotate-by(n;1)))
9. (rotate-by(n;1) o ((rotate-by(n;n - 1) o (a1 o rotate-by(n;1))) o rotate-by(n;n - 1)))
= (rotate-by(n;1) o ((rotate-by(n;n - 1) o (a2 o rotate-by(n;1))) o rotate-by(n;n - 1)))
\mvdash{} a1 = a2
By
Latex:
(DVar `a1' THEN DVar `a2' THEN EqTypeCD THEN Try (Complete (Auto)))
Home
Index