Step
*
3
1
of Lemma
mul-polynom-val
1. k : ℕ
2. ∀k:ℕk
     ∀[n:ℕ]. ∀[p,q:polyform(n)].
       (((tree_size(p) + tree_size(q)) ≤ k) 
⇒ (∀[l:{l:ℤ List| n ≤ ||l||} ]. (mul-polynom(p;q)@l = (p@l * q@l) ∈ ℤ)))
3. n : ℕ
4. left : tree(ℤ)
5. p2 : tree(ℤ)
6. ((↑(ispolyform(left) (n - 1))) ∧ (↑(ispolyform(p2) n))) ∧ 0 < n
7. q1 : ℤ
8. True
9. (((1 + tree_size(left)) + tree_size(p2)) + 0) ≤ k
10. u : ℤ
11. v : ℤ List
12. n ≤ (||v|| + 1)
13. mul-polynom(left;tree_leaf(q1)) ∈ polyform(n - 1)
14. mul-polynom(p2;tree_leaf(q1)) ∈ polyform(n)
⊢ if q1=0
  then polyconst(0)
  else if q1=1 then tree_node(left;p2) else tree_node(mul-polynom(left;tree_leaf(q1));mul-polynom(p2;tree_leaf(q1)))@...
= (tree_node(left;p2)@[u / v] * tree_leaf(q1)@[u / v])
∈ ℤ
BY
{ AutoSplit }
1
1. k : ℕ
2. ∀k:ℕk
     ∀[n:ℕ]. ∀[p,q:polyform(n)].
       (((tree_size(p) + tree_size(q)) ≤ k) 
⇒ (∀[l:{l:ℤ List| n ≤ ||l||} ]. (mul-polynom(p;q)@l = (p@l * q@l) ∈ ℤ)))
3. n : ℕ
4. left : tree(ℤ)
5. p2 : tree(ℤ)
6. ((↑(ispolyform(left) (n - 1))) ∧ (↑(ispolyform(p2) n))) ∧ 0 < n
7. q1 : ℤ
8. True
9. (((1 + tree_size(left)) + tree_size(p2)) + 0) ≤ k
10. u : ℤ
11. v : ℤ List
12. n ≤ (||v|| + 1)
13. mul-polynom(left;tree_leaf(q1)) ∈ polyform(n - 1)
14. mul-polynom(p2;tree_leaf(q1)) ∈ polyform(n)
15. q1 = 0 ∈ ℤ
⊢ 0 = (tree_node(left;p2)@[u / v] * tree_leaf(q1)@[u / v]) ∈ ℤ
2
1. k : ℕ
2. ∀k:ℕk
     ∀[n:ℕ]. ∀[p,q:polyform(n)].
       (((tree_size(p) + tree_size(q)) ≤ k) 
⇒ (∀[l:{l:ℤ List| n ≤ ||l||} ]. (mul-polynom(p;q)@l = (p@l * q@l) ∈ ℤ)))
3. n : ℕ
4. left : tree(ℤ)
5. p2 : tree(ℤ)
6. ((↑(ispolyform(left) (n - 1))) ∧ (↑(ispolyform(p2) n))) ∧ 0 < n
7. q1 : ℤ
8. q1 ≠ 0
9. True
10. (((1 + tree_size(left)) + tree_size(p2)) + 0) ≤ k
11. u : ℤ
12. v : ℤ List
13. n ≤ (||v|| + 1)
14. mul-polynom(left;tree_leaf(q1)) ∈ polyform(n - 1)
15. mul-polynom(p2;tree_leaf(q1)) ∈ polyform(n)
⊢ if q1=1 then tree_node(left;p2) else tree_node(mul-polynom(left;tree_leaf(q1));mul-polynom(p2;tree_leaf(q1)))@[u / v]
= (tree_node(left;p2)@[u / v] * tree_leaf(q1)@[u / v])
∈ ℤ
Latex:
Latex:
1.  k  :  \mBbbN{}
2.  \mforall{}k:\mBbbN{}k
          \mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)].
              (((tree\_size(p)  +  tree\_size(q))  \mleq{}  k)
              {}\mRightarrow{}  (\mforall{}[l:\{l:\mBbbZ{}  List|  n  \mleq{}  ||l||\}  ].  (mul-polynom(p;q)@l  =  (p@l  *  q@l))))
3.  n  :  \mBbbN{}
4.  left  :  tree(\mBbbZ{})
5.  p2  :  tree(\mBbbZ{})
6.  ((\muparrow{}(ispolyform(left)  (n  -  1)))  \mwedge{}  (\muparrow{}(ispolyform(p2)  n)))  \mwedge{}  0  <  n
7.  q1  :  \mBbbZ{}
8.  True
9.  (((1  +  tree\_size(left))  +  tree\_size(p2))  +  0)  \mleq{}  k
10.  u  :  \mBbbZ{}
11.  v  :  \mBbbZ{}  List
12.  n  \mleq{}  (||v||  +  1)
13.  mul-polynom(left;tree\_leaf(q1))  \mmember{}  polyform(n  -  1)
14.  mul-polynom(p2;tree\_leaf(q1))  \mmember{}  polyform(n)
\mvdash{}  if  q1=0
    then  polyconst(0)
    else  if  q1=1
              then  tree\_node(left;p2)
              else  tree\_node(mul-polynom(left;tree\_leaf(q1));mul-polynom(p2;tree\_leaf(q1)))@[u  /  v]
=  (tree\_node(left;p2)@[u  /  v]  *  tree\_leaf(q1)@[u  /  v])
By
Latex:
AutoSplit
Home
Index