Step
*
of Lemma
polyvar-val
∀[v:ℕ]. ∀[l:{l:ℤ List| v < ||l||} ]. (polyvar(v)@l = l[v] ∈ ℤ)
BY
{ ((InductionOnNat THEN Auto) THEN RecUnfold `polyvar` 0 THEN Reduce 0) }
1
1. v : ℤ
2. l : {l:ℤ List| 0 < ||l||}
⊢ tree_node(tree_leaf(0);tree_leaf(1))@l = l[0] ∈ ℤ
2
1. v : ℤ
2. 0 < v
3. ∀[l:{l:ℤ List| v - 1 < ||l||} ]. (polyvar(v - 1)@l = l[v - 1] ∈ ℤ)
4. l : {l:ℤ List| v < ||l||}
⊢ if v=0 then tree_node(tree_leaf(0);tree_leaf(1)) else eval a = polyvar(v - 1) in tree_node(a;tree_leaf(0))@l
= l[v]
∈ ℤ
Latex:
Latex:
\mforall{}[v:\mBbbN{}]. \mforall{}[l:\{l:\mBbbZ{} List| v < ||l||\} ]. (polyvar(v)@l = l[v])
By
Latex:
((InductionOnNat THEN Auto) THEN RecUnfold `polyvar` 0 THEN Reduce 0)
Home
Index