Nuprl Definition : bounded-lattice-hom
Hom(l1;l2) ==  {f:Hom(l1;l2)| ((f 0) = 0 ∈ Point(l2)) ∧ ((f 1) = 1 ∈ Point(l2))} 
Definitions occuring in Statement : 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
equal: s = t ∈ T
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
lattice-0: 0
, 
equal: s = t ∈ T
, 
lattice-point: Point(l)
, 
apply: f a
, 
lattice-1: 1
FDL editor aliases : 
bounded-lattice-hom
Latex:
Hom(l1;l2)  ==    \{f:Hom(l1;l2)|  ((f  0)  =  0)  \mwedge{}  ((f  1)  =  1)\} 
Date html generated:
2020_05_20-AM-08_24_49
Last ObjectModification:
2015_10_06-PM-01_45_35
Theory : lattices
Home
Index