Step
*
1
2
1
1
of Lemma
dm-neg-neg
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-DeMorgan-lattice(T;eq))
4. ∀g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T; union-deq(T;T;eq;eq))).
     (((λz.free-dl-inc(z))
      = (g o (λx.free-dl-inc(x)))
      ∈ ((T + T) ⟶ Point(free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
     
⇒ ((λz.free-dl-inc(z))
        = (h o (λx.free-dl-inc(x)))
        ∈ ((T + T) ⟶ Point(free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
     
⇒ (g = h ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
5. ∀[f:Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq)))].
   ∀[g:Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))].
     (g o f ∈ Hom(free-DeMorgan-lattice(T;eq);free-DeMorgan-lattice(T;eq)))
⊢ (λx.¬(x)) o (λx.¬(x)) ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T;
                                                                                               union-deq(T;T;eq;eq)))
BY
{ BHyp -1 }
1
.....wf..... 
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-DeMorgan-lattice(T;eq))
4. ∀g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T; union-deq(T;T;eq;eq))).
     (((λz.free-dl-inc(z))
      = (g o (λx.free-dl-inc(x)))
      ∈ ((T + T) ⟶ Point(free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
     
⇒ ((λz.free-dl-inc(z))
        = (h o (λx.free-dl-inc(x)))
        ∈ ((T + T) ⟶ Point(free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
     
⇒ (g = h ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
5. ∀[f:Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq)))].
   ∀[g:Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))].
     (g o f ∈ Hom(free-DeMorgan-lattice(T;eq);free-DeMorgan-lattice(T;eq)))
⊢ λx.¬(x) ∈ Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq)))
2
.....wf..... 
1. T : Type
2. eq : EqDecider(T)
3. x : Point(free-DeMorgan-lattice(T;eq))
4. ∀g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T; union-deq(T;T;eq;eq))).
     (((λz.free-dl-inc(z))
      = (g o (λx.free-dl-inc(x)))
      ∈ ((T + T) ⟶ Point(free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
     
⇒ ((λz.free-dl-inc(z))
        = (h o (λx.free-dl-inc(x)))
        ∈ ((T + T) ⟶ Point(free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
     
⇒ (g = h ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));free-dist-lattice(T + T; union-deq(T;T;eq;eq)))))
5. ∀[f:Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq)))].
   ∀[g:Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))].
     (g o f ∈ Hom(free-DeMorgan-lattice(T;eq);free-DeMorgan-lattice(T;eq)))
⊢ λx.¬(x) ∈ Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  Point(free-DeMorgan-lattice(T;eq))
4.  \mforall{}g,h:Hom(free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq));free-dist-lattice(T  +  T;
                                                                                                                                                          union-deq(T;T;eq;eq))).
          (((\mlambda{}z.free-dl-inc(z))  =  (g  o  (\mlambda{}x.free-dl-inc(x))))
          {}\mRightarrow{}  ((\mlambda{}z.free-dl-inc(z))  =  (h  o  (\mlambda{}x.free-dl-inc(x))))
          {}\mRightarrow{}  (g  =  h))
5.  \mforall{}[f:Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq)))].
      \mforall{}[g:Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))].
          (g  o  f  \mmember{}  Hom(free-DeMorgan-lattice(T;eq);free-DeMorgan-lattice(T;eq)))
\mvdash{}  (\mlambda{}x.\mneg{}(x))  o  (\mlambda{}x.\mneg{}(x))  \mmember{}  Hom(free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq)
                                                                                                );free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq)))
By
Latex:
BHyp  -1
Home
Index