Step * 1 4 of Lemma dm-neg-neg

.....antecedent..... 
1. Type
2. eq EqDecider(T)
3. Point(free-DeMorgan-lattice(T;eq))
4. ∀g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));free-dist-lattice(T T; union-deq(T;T;eq;eq))).
     (((λz.free-dl-inc(z))
      (g x.free-dl-inc(x)))
      ∈ ((T T) ⟶ Point(free-dist-lattice(T T; union-deq(T;T;eq;eq)))))
      ((λz.free-dl-inc(z))
        (h x.free-dl-inc(x)))
        ∈ ((T T) ⟶ Point(free-dist-lattice(T T; union-deq(T;T;eq;eq)))))
      (g h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));free-dist-lattice(T T; union-deq(T;T;eq;eq)))))
⊢ z.free-dl-inc(z))
((λx.¬(x))) x.free-dl-inc(x)))
∈ ((T T) ⟶ Point(free-dist-lattice(T T; union-deq(T;T;eq;eq))))
BY
((FunExt THENA Auto) THEN RepUR ``compose`` 0) }

1
1. Type
2. eq EqDecider(T)
3. Point(free-DeMorgan-lattice(T;eq))
4. ∀g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));free-dist-lattice(T T; union-deq(T;T;eq;eq))).
     (((λz.free-dl-inc(z))
      (g x.free-dl-inc(x)))
      ∈ ((T T) ⟶ Point(free-dist-lattice(T T; union-deq(T;T;eq;eq)))))
      ((λz.free-dl-inc(z))
        (h x.free-dl-inc(x)))
        ∈ ((T T) ⟶ Point(free-dist-lattice(T T; union-deq(T;T;eq;eq)))))
      (g h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));free-dist-lattice(T T; union-deq(T;T;eq;eq)))))
5. x1 T
⊢ free-dl-inc(x1) = ¬(free-dl-inc(x1))) ∈ Point(free-dist-lattice(T T; union-deq(T;T;eq;eq)))


Latex:


Latex:
.....antecedent..... 
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  Point(free-DeMorgan-lattice(T;eq))
4.  \mforall{}g,h:Hom(free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq));free-dist-lattice(T  +  T;
                                                                                                                                                          union-deq(T;T;eq;eq))).
          (((\mlambda{}z.free-dl-inc(z))  =  (g  o  (\mlambda{}x.free-dl-inc(x))))
          {}\mRightarrow{}  ((\mlambda{}z.free-dl-inc(z))  =  (h  o  (\mlambda{}x.free-dl-inc(x))))
          {}\mRightarrow{}  (g  =  h))
\mvdash{}  (\mlambda{}z.free-dl-inc(z))  =  ((\mlambda{}x.\mneg{}(\mneg{}(x)))  o  (\mlambda{}x.free-dl-inc(x)))


By


Latex:
((FunExt  THENA  Auto)  THEN  RepUR  ``compose``  0)




Home Index