Step * 1 of Lemma free-dl-functor_wf


1. ∀Y:Type. (Point(free-dl(Y)) free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. Type@i'
4. Type@i'
5. Type@i'
6. X ⟶ Y@i'
7. Y ⟶ z@i'
8. X@i
⊢ (fdl-hom(free-dl(z);λx@0.free-dl-generator(g (f x@0))) free-dl-generator(x))
((fdl-hom(free-dl(z);λx.free-dl-generator(g x)) fdl-hom(free-dl(Y);λx.free-dl-generator(f x))) free-dl-generator(x))
∈ Point(free-dl(z))
BY
RepUR ``compose`` }

1
1. ∀Y:Type. (Point(free-dl(Y)) free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. Type@i'
4. Type@i'
5. Type@i'
6. X ⟶ Y@i'
7. Y ⟶ z@i'
8. X@i
⊢ (fdl-hom(free-dl(z);λx@0.free-dl-generator(g (f x@0))) free-dl-generator(x))
(fdl-hom(free-dl(z);λx.free-dl-generator(g x)) (fdl-hom(free-dl(Y);λx.free-dl-generator(f x)) free-dl-generator(x)))
∈ Point(free-dl(z))


Latex:


Latex:

1.  \mforall{}Y:Type.  (Point(free-dl(Y))  \msim{}  free-dl-type(Y))
2.  \mforall{}Y:Type.  \mforall{}y:Y.    (free-dl-generator(y)  \mmember{}  Point(free-dl(Y)))
3.  X  :  Type@i'
4.  Y  :  Type@i'
5.  z  :  Type@i'
6.  f  :  X  {}\mrightarrow{}  Y@i'
7.  g  :  Y  {}\mrightarrow{}  z@i'
8.  x  :  X@i
\mvdash{}  (fdl-hom(free-dl(z);\mlambda{}x@0.free-dl-generator(g  (f  x@0)))  free-dl-generator(x))
=  ((fdl-hom(free-dl(z);\mlambda{}x.free-dl-generator(g  x))  o  fdl-hom(free-dl(Y);\mlambda{}x.free-dl-generator(f  x))) 
      free-dl-generator(x))


By


Latex:
RepUR  ``compose``  0




Home Index