Step
*
of Lemma
free-dma-lift-unique2
No Annotations
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))]. ∀[f:T ⟶ Point(dm)].
∀[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
  ∀x:Point(free-DeMorgan-algebra(T;eq)). ((free-dma-lift(T;eq;dm;eq2;f) x) = (g x) ∈ Point(dm)) 
  supposing ∀i:T. ((g <i>) = (f i) ∈ Point(dm))
BY
{ (InstLemma `free-dma-lift-unique` [] THEN RepeatFor 7 (ParallelLast') THEN Auto) }
Latex:
Latex:
No  Annotations
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
\mforall{}[f:T  {}\mrightarrow{}  Point(dm)].  \mforall{}[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
    \mforall{}x:Point(free-DeMorgan-algebra(T;eq)).  ((free-dma-lift(T;eq;dm;eq2;f)  x)  =  (g  x)) 
    supposing  \mforall{}i:T.  ((g  <i>)  =  (f  i))
By
Latex:
(InstLemma  `free-dma-lift-unique`  []  THEN  RepeatFor  7  (ParallelLast')  THEN  Auto)
Home
Index