Step * 1 of Lemma lattice-extend-wc-order-preserving


1. Type
2. eq EqDecider(T)
3. Cs T ⟶ fset(fset(T))
4. BoundedDistributiveLattice
5. eqL EqDecider(Point(L))
6. T ⟶ Point(L)
7. Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
9. x ≤ y
⊢ lattice-extend-wc(L;eq;eqL;f;x) ≤ lattice-extend-wc(L;eq;eqL;f;y)
BY
(Unfold `lattice-extend-wc` THEN BLemma `lattice-extend-order-preserving` THEN Auto) }

1
1. Type
2. eq EqDecider(T)
3. Cs T ⟶ fset(fset(T))
4. BoundedDistributiveLattice
5. eqL EqDecider(Point(L))
6. T ⟶ Point(L)
7. Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
9. x ≤ y
⊢ x ≤ y


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Cs  :  T  {}\mrightarrow{}  fset(fset(T))
4.  L  :  BoundedDistributiveLattice
5.  eqL  :  EqDecider(Point(L))
6.  f  :  T  {}\mrightarrow{}  Point(L)
7.  x  :  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8.  y  :  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
9.  x  \mleq{}  y
\mvdash{}  lattice-extend-wc(L;eq;eqL;f;x)  \mleq{}  lattice-extend-wc(L;eq;eqL;f;y)


By


Latex:
(Unfold  `lattice-extend-wc`  0  THEN  BLemma  `lattice-extend-order-preserving`  THEN  Auto)




Home Index