Step
*
1
1
1
1
of Lemma
lattice-fset-meet-free-dl-inc
1. T : Type
2. eq : EqDecider(T)
3. s : fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
8. x : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
9. x1 : T
10. x1 ∈ s
11. x = {{x1}} ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
⊢ ¬↑fset-null({y ∈ x | deq-f-subset(eq) y s})
BY
{ ((HypSubst' (-1) 0 THENA Auto)
   THEN RepUR ``fset-singleton fset-filter`` 0
   THEN Fold `fset-singleton` 0
   THEN (SplitOnConclITE THENA Auto)) }
1
.....truecase..... 
1. T : Type
2. eq : EqDecider(T)
3. s : fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
8. x : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
9. x1 : T
10. x1 ∈ s
11. x = {{x1}} ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
12. {x1} ⊆ s
⊢ ¬↑fset-null({{x1}})
2
.....falsecase..... 
1. T : Type
2. eq : EqDecider(T)
3. s : fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ x supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
8. x : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} @i
9. x1 : T
10. x1 ∈ s
11. x = {{x1}} ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
12. ¬{x1} ⊆ s
⊢ ¬↑fset-null([])
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  s  :  fset(T)
4.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice(T;  eq)))
5.  \{s\}  \mmember{}  Point(free-dist-lattice(T;  eq))
6.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
          /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s
7.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[v:Point(free-dist-lattice(T;  eq))].
          ((\mforall{}x:Point(free-dist-lattice(T;  eq)).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))
8.  x  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  @i
9.  x1  :  T
10.  x1  \mmember{}  s
11.  x  =  \{\{x1\}\}
\mvdash{}  \mneg{}\muparrow{}fset-null(\{y  \mmember{}  x  |  deq-f-subset(eq)  y  s\})
By
Latex:
((HypSubst'  (-1)  0  THENA  Auto)
  THEN  RepUR  ``fset-singleton  fset-filter``  0
  THEN  Fold  `fset-singleton`  0
  THEN  (SplitOnConclITE  THENA  Auto))
Home
Index