Step
*
2
of Lemma
lattice-fset-meet_wf
1. l : BoundedLattice
2. ∀x,y:Point(l). Dec(x = y ∈ Point(l))
3. s : fset(Point(l))
4. EqDecider(Point(l))
⊢ /\(s) ∈ Point(l)
BY
{ (RenameVar `eq' (-1)
THEN Thin 2
THEN PromoteHyp(-1) 2
THEN D -1
THEN MoveToConcl (-1)
THEN ((GenConcl ⌜s = L1 ∈ (Point(l) List)⌝⋅ THENA Auto) THEN ThinVar `s')
THEN ((GenConcl ⌜s1 = L2 ∈ (Point(l) List)⌝⋅ THENA Auto) THEN ThinVar `s1')
THEN RepeatFor 2 (MoveToConcl (-1))
THEN (Assert ⌜∀n:ℕ. ∀L1:Point(l) List.
(||L1|| < n
⇒ (∀L2:Point(l) List. (set-equal(Point(l);L1;L2)
⇒ (/\(L1) = /\(L2) ∈ Point(l)))))⌝⋅
THENM ((D 0 THENA Auto) THEN InstHyp [⌜||L1|| + 1⌝;⌜L1⌝] (-2)⋅ THEN Auto)
)
THEN InductionOnNat
THEN Auto') }
1
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
3. n : ℤ
4. 0 < n
5. ∀L1:Point(l) List
(||L1|| < n - 1
⇒ (∀L2:Point(l) List. (set-equal(Point(l);L1;L2)
⇒ (/\(L1) = /\(L2) ∈ Point(l)))))
6. L1 : Point(l) List
7. ||L1|| < n
8. L2 : Point(l) List
9. set-equal(Point(l);L1;L2)
⊢ /\(L1) = /\(L2) ∈ Point(l)
Latex:
Latex:
1. l : BoundedLattice
2. \mforall{}x,y:Point(l). Dec(x = y)
3. s : fset(Point(l))
4. EqDecider(Point(l))
\mvdash{} /\mbackslash{}(s) \mmember{} Point(l)
By
Latex:
(RenameVar `eq' (-1)
THEN Thin 2
THEN PromoteHyp(-1) 2
THEN D -1
THEN MoveToConcl (-1)
THEN ((GenConcl \mkleeneopen{}s = L1\mkleeneclose{}\mcdot{} THENA Auto) THEN ThinVar `s')
THEN ((GenConcl \mkleeneopen{}s1 = L2\mkleeneclose{}\mcdot{} THENA Auto) THEN ThinVar `s1')
THEN RepeatFor 2 (MoveToConcl (-1))
THEN (Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}L1:Point(l) List.
(||L1|| < n
{}\mRightarrow{} (\mforall{}L2:Point(l) List. (set-equal(Point(l);L1;L2) {}\mRightarrow{} (/\mbackslash{}(L1) = /\mbackslash{}(L2)))))\mkleeneclose{}\mcdot{}
THENM ((D 0 THENA Auto) THEN InstHyp [\mkleeneopen{}||L1|| + 1\mkleeneclose{};\mkleeneopen{}L1\mkleeneclose{}] (-2)\mcdot{} THEN Auto)
)
THEN InductionOnNat
THEN Auto')
Home
Index