Step * 1 of Lemma nil_interleaving2


1. Type
2. L1 List
3. List
4. ||L|| (||L1|| 0) ∈ ℕ
5. disjoint_sublists(T;L1;[];L)
⊢ L1 ∈ (T List)
BY
((FwdThruLemma `disjoint_sublists_sublist` [(-1)] THEN Auto)
   THEN (Symmetry THEN BackThruLemma `proper_sublist_length`)
   THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  L1  :  T  List
3.  L  :  T  List
4.  ||L||  =  (||L1||  +  0)
5.  disjoint\_sublists(T;L1;[];L)
\mvdash{}  L  =  L1


By


Latex:
((FwdThruLemma  `disjoint\_sublists\_sublist`  [(-1)]  THEN  Auto)
  THEN  (Symmetry  THEN  BackThruLemma  `proper\_sublist\_length`)
  THEN  Auto)




Home Index