Step
*
of Lemma
FOConnective+_wf
∀[vsa,vsb:ℤ List].
∀knd:Atom
(FOConnective+(knd) ∈ AbstractFOFormula+(vsa)
⟶ AbstractFOFormula+(vsb)
⟶ AbstractFOFormula+(val-union(IntDeq;vsa;vsb)))
BY
{ (RepeatFor 3 ((D 0 THENA Auto))
THEN Unfold `FOConnective+` 0
THEN RepeatFor 2 ((MemCD THENA Auto))
THEN Unfold `AbstractFOFormula+` 0
THEN RepeatFor 3 ((MemCD THENA Auto))
THEN (Assert vsa ⊆ val-union(IntDeq;vsa;vsb) ∧ vsb ⊆ val-union(IntDeq;vsa;vsb) BY
(RWO "val-union-l-union" 0 THEN Auto))
THEN (Assert a ∈ FOAssignment(vsa,Dom) BY
(DoSubsume THEN Auto THEN BLemma `subtype_rel_FOAssignment` THEN Auto))
THEN (GenConclTerm ⌜Dom,S,a +|= x⌝⋅ THENA Auto)
THEN Thin (-3)
THEN (Assert a ∈ FOAssignment(vsb,Dom) BY
(DoSubsume THEN Auto THEN BLemma `subtype_rel_FOAssignment` THEN Auto))
THEN (GenConclTerm ⌜Dom,S,a +|= y⌝⋅ THENA Auto)
THEN Thin (-3)
THEN GenConclTerm ⌜S "false" []⌝⋅
THEN Auto) }
Latex:
Latex:
\mforall{}[vsa,vsb:\mBbbZ{} List].
\mforall{}knd:Atom
(FOConnective+(knd) \mmember{} AbstractFOFormula+(vsa)
{}\mrightarrow{} AbstractFOFormula+(vsb)
{}\mrightarrow{} AbstractFOFormula+(val-union(IntDeq;vsa;vsb)))
By
Latex:
(RepeatFor 3 ((D 0 THENA Auto))
THEN Unfold `FOConnective+` 0
THEN RepeatFor 2 ((MemCD THENA Auto))
THEN Unfold `AbstractFOFormula+` 0
THEN RepeatFor 3 ((MemCD THENA Auto))
THEN (Assert vsa \msubseteq{} val-union(IntDeq;vsa;vsb) \mwedge{} vsb \msubseteq{} val-union(IntDeq;vsa;vsb) BY
(RWO "val-union-l-union" 0 THEN Auto))
THEN (Assert a \mmember{} FOAssignment(vsa,Dom) BY
(DoSubsume THEN Auto THEN BLemma `subtype\_rel\_FOAssignment` THEN Auto))
THEN (GenConclTerm \mkleeneopen{}Dom,S,a +|= x\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-3)
THEN (Assert a \mmember{} FOAssignment(vsb,Dom) BY
(DoSubsume THEN Auto THEN BLemma `subtype\_rel\_FOAssignment` THEN Auto))
THEN (GenConclTerm \mkleeneopen{}Dom,S,a +|= y\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-3)
THEN GenConclTerm \mkleeneopen{}S "false" []\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index