Step
*
2
1
of Lemma
FOL-rename-bound-to-avoid_wf
1. fmla : mFOL()
2. L : ℤ List
3. v : ∀fmla:mFOL(). ∀L:ℤ List.
(∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))])
4. TERMOF{FOL-bound-rename:o, 1:l, i:l}
= v
∈ (∀fmla:mFOL(). ∀L:ℤ List.
(∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))]))
⊢ v fmla L ∈ {fmla':mFOL()|
(mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla'))}
BY
{ (Unfold `all` (-2) THEN DoSubsume) }
1
1. fmla : mFOL()
2. L : ℤ List
3. v : fmla:mFOL()
⟶ L:(ℤ List)
⟶ (∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))])
4. TERMOF{FOL-bound-rename:o, 1:l, i:l}
= v
∈ (∀fmla:mFOL(). ∀L:ℤ List.
(∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))]))
⊢ v fmla L ∈ ∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))]
2
1. fmla : mFOL()
2. L : ℤ List
3. v : fmla:mFOL()
⟶ L:(ℤ List)
⟶ (∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))])
4. TERMOF{FOL-bound-rename:o, 1:l, i:l}
= v
∈ (∀fmla:mFOL(). ∀L:ℤ List.
(∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))]))
5. (v fmla L)
= (v fmla L)
∈ (∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))])
⊢ (∃fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla') = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))]) ⊆r {fmla':mFOL()|
(mFOL-freevars(fmla') = mFOL-freevars(fmla) ∈ (ℤ List))
∧ (FOL-abstract(fmla')
= FOL-abstract(fmla)
∈ AbstractFOFormula+(mFOL-freevars(fmla)))
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla'))}
Latex:
Latex:
1. fmla : mFOL()
2. L : \mBbbZ{} List
3. v : \mforall{}fmla:mFOL(). \mforall{}L:\mBbbZ{} List.
(\mexists{}fmla':mFOL() [((mFOL-freevars(fmla') = mFOL-freevars(fmla))
\mwedge{} (FOL-abstract(fmla') = FOL-abstract(fmla))
\mwedge{} l\_disjoint(\mBbbZ{};L;mFOL-boundvars(fmla')))])
4. TERMOF\{FOL-bound-rename:o, 1:l, i:l\} = v
\mvdash{} v fmla L \mmember{} \{fmla':mFOL()|
(mFOL-freevars(fmla') = mFOL-freevars(fmla))
\mwedge{} (FOL-abstract(fmla') = FOL-abstract(fmla))
\mwedge{} l\_disjoint(\mBbbZ{};L;mFOL-boundvars(fmla'))\}
By
Latex:
(Unfold `all` (-2) THEN DoSubsume)
Home
Index