Step
*
2
1
of Lemma
FOL-subst-abstract
.....subterm..... T:t
3:n
1. Dom : Type
2. S : FOStruct+{i:l}(Dom)
3. fmla : mFOL()
4. x : ℤ
5. y : ℤ
6. v : mFOL()
7. mFOL-freevars(v) = mFOL-freevars(fmla) ∈ (ℤ List)
8. FOL-abstract(v) = FOL-abstract(fmla) ∈ AbstractFOFormula+(mFOL-freevars(fmla))
9. ¬(x ∈ mFOL-boundvars(v))
10. a : FOAssignment(mFOL-freevars(mFOL-rename(v;y;x)),Dom)
11. a[y := a x] = if y ∈b mFOL-freevars(v) then a[y := a x] else a fi ∈ FOAssignment(mFOL-freevars(v),Dom)
12. Dom,S,a[y := a x] +|= FOL-abstract(v) = Dom,S,a +|= FOL-abstract(mFOL-rename(v;y;x)) ∈ ℙ
⊢ a[y := a x] = a[y := a x] ∈ FOAssignment(mFOL-freevars(fmla),Dom)
BY
{ (RevHypSubst' 7 0 THEN Auto) }
Latex:
Latex:
.....subterm..... T:t
3:n
1. Dom : Type
2. S : FOStruct+\{i:l\}(Dom)
3. fmla : mFOL()
4. x : \mBbbZ{}
5. y : \mBbbZ{}
6. v : mFOL()
7. mFOL-freevars(v) = mFOL-freevars(fmla)
8. FOL-abstract(v) = FOL-abstract(fmla)
9. \mneg{}(x \mmember{} mFOL-boundvars(v))
10. a : FOAssignment(mFOL-freevars(mFOL-rename(v;y;x)),Dom)
11. a[y := a x] = if y \mmember{}\msubb{} mFOL-freevars(v) then a[y := a x] else a fi
12. Dom,S,a[y := a x] +|= FOL-abstract(v) = Dom,S,a +|= FOL-abstract(mFOL-rename(v;y;x))
\mvdash{} a[y := a x] = a[y := a x]
By
Latex:
(RevHypSubst' 7 0 THEN Auto)
Home
Index