Step * of Lemma A-associative'

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S,U:Type]. ∀[m:A-map'(array-model(AType)) T].
[f:T ⟶ (A-map'(array-model(AType)) S)]. ∀[g:S ⟶ (A-map'(array-model(AType)) U)].
  ((A-bind'(array-model(AType)) (A-bind'(array-model(AType)) f) g)
  (A-bind'(array-model(AType)) x.(A-bind'(array-model(AType)) (f x) g)))
  ∈ (A-map'(array-model(AType)) U))
BY
(RepUR ``A-bind' A-return' array-model A-map'`` THEN Auto)⋅ }


Latex:


Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S,U:Type].  \mforall{}[m:A-map'(array-model(AType))  T].
\mforall{}[f:T  {}\mrightarrow{}  (A-map'(array-model(AType))  S)].  \mforall{}[g:S  {}\mrightarrow{}  (A-map'(array-model(AType))  U)].
    ((A-bind'(array-model(AType))  (A-bind'(array-model(AType))  m  f)  g)
    =  (A-bind'(array-model(AType))  m  (\mlambda{}x.(A-bind'(array-model(AType))  (f  x)  g))))


By


Latex:
(RepUR  ``A-bind'  A-return'  array-model  A-map'``  0  THEN  Auto)\mcdot{}




Home Index