Step
*
1
of Lemma
expectation-constant
1. p : FinProbSpace
2. a : ℚ
3. n : ℕ
4. X : RandomVariable(p;n)
5. ∀s:ℕn ⟶ Outcome. ((X s) = a ∈ ℚ)
⊢ E(n;X) = a ∈ ℚ
BY
{ (NatInd (-3) THEN RecUnfold `expectation` 0 THEN Reduce 0) }
1
1. p : FinProbSpace
2. a : ℚ
3. n : ℤ
⊢ ∀X:RandomVariable(p;0). ((∀s:ℕ0 ⟶ Outcome. ((X s) = a ∈ ℚ))
⇒ ((X null) = a ∈ ℚ))
2
1. p : FinProbSpace
2. a : ℚ
3. n : ℤ
4. 0 < n
5. ∀X:RandomVariable(p;n - 1). ((∀s:ℕn - 1 ⟶ Outcome. ((X s) = a ∈ ℚ))
⇒ (E(n - 1;X) = a ∈ ℚ))
⊢ ∀X:RandomVariable(p;n)
((∀s:ℕn ⟶ Outcome. ((X s) = a ∈ ℚ))
⇒ (if (n =z 0) then X null else weighted-sum(p;λx.E(n - 1;rv-shift(x;X))) fi = a ∈ ℚ))
Latex:
Latex:
1. p : FinProbSpace
2. a : \mBbbQ{}
3. n : \mBbbN{}
4. X : RandomVariable(p;n)
5. \mforall{}s:\mBbbN{}n {}\mrightarrow{} Outcome. ((X s) = a)
\mvdash{} E(n;X) = a
By
Latex:
(NatInd (-3) THEN RecUnfold `expectation` 0 THEN Reduce 0)
Home
Index