Step
*
of Lemma
member-p-union
∀p:FinProbSpace. ∀A,B:p-open(p). ∀s:ℕ ⟶ Outcome. (s ∈ p-union(A;B)
⇐⇒ s ∈ A ∨ s ∈ B)
BY
{ (Unfolds ``p-open-member p-open p-union`` 0 THEN Auto THEN Reduce 0 THEN Auto' THEN SplitOrHyps)⋅ }
1
1. p : FinProbSpace
2. A : {C:(n:ℕ × (ℕn ⟶ Outcome)) ⟶ ℕ2| ∀s:ℕ ⟶ Outcome. ∀j:ℕ. ∀i:ℕj. ((C <i, s>) ≤ (C <j, s>))}
3. B : {C:(n:ℕ × (ℕn ⟶ Outcome)) ⟶ ℕ2| ∀s:ℕ ⟶ Outcome. ∀j:ℕ. ∀i:ℕj. ((C <i, s>) ≤ (C <j, s>))}
4. s : ℕ ⟶ Outcome
5. ∃n:ℕ. (((λp.if (A p =z 1) then 1 else B p fi ) <n, s>) = 1 ∈ ℤ)
⊢ (∃n:ℕ. ((A <n, s>) = 1 ∈ ℤ)) ∨ (∃n:ℕ. ((B <n, s>) = 1 ∈ ℤ))
2
1. p : FinProbSpace
2. A : {C:(n:ℕ × (ℕn ⟶ Outcome)) ⟶ ℕ2| ∀s:ℕ ⟶ Outcome. ∀j:ℕ. ∀i:ℕj. ((C <i, s>) ≤ (C <j, s>))}
3. B : {C:(n:ℕ × (ℕn ⟶ Outcome)) ⟶ ℕ2| ∀s:ℕ ⟶ Outcome. ∀j:ℕ. ∀i:ℕj. ((C <i, s>) ≤ (C <j, s>))}
4. s : ℕ ⟶ Outcome
5. ∃n:ℕ. ((A <n, s>) = 1 ∈ ℤ)
⊢ ∃n:ℕ. (if (A <n, s> =z 1) then 1 else B <n, s> fi = 1 ∈ ℤ)
3
1. p : FinProbSpace
2. A : {C:(n:ℕ × (ℕn ⟶ Outcome)) ⟶ ℕ2| ∀s:ℕ ⟶ Outcome. ∀j:ℕ. ∀i:ℕj. ((C <i, s>) ≤ (C <j, s>))}
3. B : {C:(n:ℕ × (ℕn ⟶ Outcome)) ⟶ ℕ2| ∀s:ℕ ⟶ Outcome. ∀j:ℕ. ∀i:ℕj. ((C <i, s>) ≤ (C <j, s>))}
4. s : ℕ ⟶ Outcome
5. ∃n:ℕ. ((B <n, s>) = 1 ∈ ℤ)
⊢ ∃n:ℕ. (if (A <n, s> =z 1) then 1 else B <n, s> fi = 1 ∈ ℤ)
Latex:
Latex:
\mforall{}p:FinProbSpace. \mforall{}A,B:p-open(p). \mforall{}s:\mBbbN{} {}\mrightarrow{} Outcome. (s \mmember{} p-union(A;B) \mLeftarrow{}{}\mRightarrow{} s \mmember{} A \mvee{} s \mmember{} B)
By
Latex:
(Unfolds ``p-open-member p-open p-union`` 0 THEN Auto THEN Reduce 0 THEN Auto' THEN SplitOrHyps)\mcdot{}
Home
Index