Step
*
1
of Lemma
rv-disjoint-monotone-in-first
1. p : FinProbSpace
2. n : ℕ
3. X : RandomVariable(p;n)
4. Y : RandomVariable(p;n)
5. ∀i:ℕn
((∀s1,s2:ℕn ⟶ Outcome. ((∀j:ℕn. ((¬(j = i ∈ ℤ))
⇒ ((s1 j) = (s2 j) ∈ Outcome)))
⇒ ((X s1) = (X s2) ∈ ℚ)))
∨ (∀s1,s2:ℕn ⟶ Outcome. ((∀j:ℕn. ((¬(j = i ∈ ℤ))
⇒ ((s1 j) = (s2 j) ∈ Outcome)))
⇒ ((Y s1) = (Y s2) ∈ ℚ))))
6. m : ℕ
7. n ≤ m
8. i : ℕm
9. i < n
⊢ (∀s1,s2:ℕm ⟶ Outcome. ((∀j:ℕm. ((¬(j = i ∈ ℤ))
⇒ ((s1 j) = (s2 j) ∈ Outcome)))
⇒ ((X s1) = (X s2) ∈ ℚ)))
∨ (∀s1,s2:ℕm ⟶ Outcome. ((∀j:ℕm. ((¬(j = i ∈ ℤ))
⇒ ((s1 j) = (s2 j) ∈ Outcome)))
⇒ ((Y s1) = (Y s2) ∈ ℚ)))
BY
{ xxx(((InstHyp [⌜i⌝] (-5))⋅ THENA Auto) THEN RepeatFor 5 (ParallelLast))xxx }
Latex:
Latex:
1. p : FinProbSpace
2. n : \mBbbN{}
3. X : RandomVariable(p;n)
4. Y : RandomVariable(p;n)
5. \mforall{}i:\mBbbN{}n
((\mforall{}s1,s2:\mBbbN{}n {}\mrightarrow{} Outcome. ((\mforall{}j:\mBbbN{}n. ((\mneg{}(j = i)) {}\mRightarrow{} ((s1 j) = (s2 j)))) {}\mRightarrow{} ((X s1) = (X s2))))
\mvee{} (\mforall{}s1,s2:\mBbbN{}n {}\mrightarrow{} Outcome. ((\mforall{}j:\mBbbN{}n. ((\mneg{}(j = i)) {}\mRightarrow{} ((s1 j) = (s2 j)))) {}\mRightarrow{} ((Y s1) = (Y s2)))))
6. m : \mBbbN{}
7. n \mleq{} m
8. i : \mBbbN{}m
9. i < n
\mvdash{} (\mforall{}s1,s2:\mBbbN{}m {}\mrightarrow{} Outcome. ((\mforall{}j:\mBbbN{}m. ((\mneg{}(j = i)) {}\mRightarrow{} ((s1 j) = (s2 j)))) {}\mRightarrow{} ((X s1) = (X s2))))
\mvee{} (\mforall{}s1,s2:\mBbbN{}m {}\mrightarrow{} Outcome. ((\mforall{}j:\mBbbN{}m. ((\mneg{}(j = i)) {}\mRightarrow{} ((s1 j) = (s2 j)))) {}\mRightarrow{} ((Y s1) = (Y s2))))
By
Latex:
xxx(((InstHyp [\mkleeneopen{}i\mkleeneclose{}] (-5))\mcdot{} THENA Auto) THEN RepeatFor 5 (ParallelLast))xxx
Home
Index