Step
*
1
of Lemma
rv-iid-add
1. p : FinProbSpace
2. f : ℕ ⟶ ℕ
3. X : n:ℕ ⟶ RandomVariable(p;f[n])
4. Y : n:ℕ ⟶ RandomVariable(p;f[n])
5. rv-identically-distributed(p;n.f[n];n.X[n])
6. ∀n:ℕ. ∀n@0:ℕn. (f[n@0] < f[n] ∧ rv-disjoint(p;f[n];X[n@0];X[n]))
7. rv-identically-distributed(p;n.f[n];n.Y[n])
8. ∀n:ℕ. ∀n@0:ℕn. (f[n@0] < f[n] ∧ rv-disjoint(p;f[n];Y[n@0];Y[n]))
9. ∀n:ℕ. ∀i:ℕn + 1. (RandomVariable(p;f[i]) ⊆r RandomVariable(p;f[n]))
10. ∀n:ℕ. ∀i:ℕn + 1. (rv-disjoint(p;f[n];Y[i];X[n]) ∧ rv-disjoint(p;f[n];X[i];Y[n]))
⊢ rv-identically-distributed(p;n.f[n];n.X[n] + Y[n])
BY
{ ((All (Unfold `rv-identically-distributed`))
THEN RepeatFor 2 ((D 0 THENA Auto))
THEN ∀h:hyp. (((InstHyp [⌜n⌝; ⌜m⌝] h)⋅ THENA Complete (Auto)) THEN Thin h)
THEN ExRepD
THEN (RWO "expectation-rv-add" 0 THENA Auto)⋅
THEN Try ((RWO "expectation-rv-add" 0 THEN Auto)⋅)
THEN (RWO "expectation-rv-add-squared" 0 THENA Auto)⋅
THEN Try ((RWO "expectation-rv-add-squared" 0 THEN Auto)⋅)
THEN (RWO "expectation-rv-add-cubed" 0 THENA Auto)⋅
THEN Try ((RWO "expectation-rv-add-cubed" 0 THEN Auto))
THEN (RWO "expectation-rv-add-fourth" 0 THENA Auto)
THEN SplitAndConcl
THEN RepeatFor 3 ((EqCDA THEN Try (Trivial)))
THEN (RWO "expectation-rv-disjoint" 0 THENA Auto)
THEN Repeat ((BLemma `rv-disjoint-rv-mul2` THEN Auto))
THEN Repeat ((BLemma `rv-disjoint-rv-mul` THEN Auto))
THEN RepeatFor 2 ((EqCDA THEN Try (Trivial)))
THEN Try (OnMaybeHyp 13 (\h. (NthHypSq h
THEN RepeatFor 2 ((EqCD THEN Try (Trivial)))
THEN RepUR ``rv-compose rv-mul`` 0
THEN Trivial)))
THEN EqCD
THEN Auto
THEN Try (OnMaybeHyp 13 (\h. (NthHypSq h
THEN RepeatFor 2 ((EqCD THEN Try (Trivial)))
THEN RepUR ``rv-compose rv-mul`` 0
THEN Trivial)))) }
Latex:
Latex:
1. p : FinProbSpace
2. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
3. X : n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n])
4. Y : n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n])
5. rv-identically-distributed(p;n.f[n];n.X[n])
6. \mforall{}n:\mBbbN{}. \mforall{}n@0:\mBbbN{}n. (f[n@0] < f[n] \mwedge{} rv-disjoint(p;f[n];X[n@0];X[n]))
7. rv-identically-distributed(p;n.f[n];n.Y[n])
8. \mforall{}n:\mBbbN{}. \mforall{}n@0:\mBbbN{}n. (f[n@0] < f[n] \mwedge{} rv-disjoint(p;f[n];Y[n@0];Y[n]))
9. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n + 1. (RandomVariable(p;f[i]) \msubseteq{}r RandomVariable(p;f[n]))
10. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n + 1. (rv-disjoint(p;f[n];Y[i];X[n]) \mwedge{} rv-disjoint(p;f[n];X[i];Y[n]))
\mvdash{} rv-identically-distributed(p;n.f[n];n.X[n] + Y[n])
By
Latex:
((All (Unfold `rv-identically-distributed`))
THEN RepeatFor 2 ((D 0 THENA Auto))
THEN \mforall{}h:hyp. (((InstHyp [\mkleeneopen{}n\mkleeneclose{}; \mkleeneopen{}m\mkleeneclose{}] h)\mcdot{} THENA Complete (Auto)) THEN Thin h)
THEN ExRepD
THEN (RWO "expectation-rv-add" 0 THENA Auto)\mcdot{}
THEN Try ((RWO "expectation-rv-add" 0 THEN Auto)\mcdot{})
THEN (RWO "expectation-rv-add-squared" 0 THENA Auto)\mcdot{}
THEN Try ((RWO "expectation-rv-add-squared" 0 THEN Auto)\mcdot{})
THEN (RWO "expectation-rv-add-cubed" 0 THENA Auto)\mcdot{}
THEN Try ((RWO "expectation-rv-add-cubed" 0 THEN Auto))
THEN (RWO "expectation-rv-add-fourth" 0 THENA Auto)
THEN SplitAndConcl
THEN RepeatFor 3 ((EqCDA THEN Try (Trivial)))
THEN (RWO "expectation-rv-disjoint" 0 THENA Auto)
THEN Repeat ((BLemma `rv-disjoint-rv-mul2` THEN Auto))
THEN Repeat ((BLemma `rv-disjoint-rv-mul` THEN Auto))
THEN RepeatFor 2 ((EqCDA THEN Try (Trivial)))
THEN Try (OnMaybeHyp 13 (\mbackslash{}h. (NthHypSq h
THEN RepeatFor 2 ((EqCD THEN Try (Trivial)))
THEN RepUR ``rv-compose rv-mul`` 0
THEN Trivial)))
THEN EqCD
THEN Auto
THEN Try (OnMaybeHyp 13 (\mbackslash{}h. (NthHypSq h
THEN RepeatFor 2 ((EqCD THEN Try (Trivial)))
THEN RepUR ``rv-compose rv-mul`` 0
THEN Trivial))))
Home
Index